

What is an actuator?

- a mechanical device for moving or controlling something
- Electric Motors and Drives
- Hydraulic Drives
- Pneumatic Drives
- Internal Combustion hybrids
- Actuators of the future

Schedule of Events

Week	Date	Content Assignment Notes		
1	09/3	Introduction		
2	16/3	Design Process		
3	23/3	System Modelling and Control		
4	30/3	Actuators		
5	6/4	Sensors	Assignment 1 Due	
		Break		
6	20/4	Computer – Hardware		
7	27/4	Computer – Software		
8	4/5	Active Sensing Systems		
9	11/5	Digital vs. Power Electronics	Assignment 2 Due	
10	18/5	Case Study : Formula SAE		
11	25/5	Case Study : Unmanned Air/Land/Sea Vehicles		
12	1/6	Guest Lecture		
13	8/6	Review	Major Assignment Due	
14	15/6	Spare		

1

Permanent Magnet DC Motors

- Many DC Servos are now brushless PM-DC motors because of advances in:
 - 1. High energy ceramic and rare earth magnets
 - 2. Development of high power switching semiconductors
- No field windings
- Result is motors which are smaller and linear
- Motor is inside-out (magnets rotate).

Stefan Williams

Mech 1751: Introduction to Mechatronics

Slide 15

Summary of Electric Motors					
Servo Motor	Advantages	Disadvantages	Applicable capacity		
DC servo motor:	Easy to use, Low priced control device	Brush replacement. Has restrictions in respect of operating environment	0.1 - few 100 Watts		
Brushless motor (PM synchronous) Synchronous motor (vector control)	No brush maintenance Excellent environment	Control device is expensive due to its complexity Detector is necessary	from few W to few kW		
()	resistivity				
Induction motor (vector control)	Durable construction	Complicated control system	More than few W		
Stepping motor	Open loop control, large static torque	Dropped out of step. Large weight/capacity ratio	Below few 10 W		
Stefan Williams	Mech 1751: Introd	duction to Mechatronics	Slide 31		

Electro-hydraulic System Example Slide 40 Stefan Williams

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item> <section-header>

