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1 Introduction 
This tutorial discusses methods for controlling a robot’s motion using the interfaces provided by 

Saphira and Aria.  Several examples of movement control are discussed; these examples can be run 
directly on the robot or the simulator. 

The purpose of this tutorial is to illustrate basic motion control, relative to the robot’s internal 
geometry.  The internal geometry is generated by integrating the robot’s motor encoders, which determine 
how far the wheels have traveled.  Because of imperfections in the wheels, slippage on the floor, and other 
environmental factors, the internal geometry will only approximately reflect the actual geometry of the 
robot motion.  For example, controlling the robot to move along a straight line causes it to move in a 
straight line according to the internal geometry, but its real motion will deviate from this ideal case, 
eventually curving and moving away from a straight line in the real world.  The only way to correct these 
deviations is by localizing the robot through sensing of the environment.  This subject is quite complex, 
and is discussed in other tutorials.  Here we assume all motion is with respect to the internal geometry. 

Examples mentioned in the tutorial are available in the tutor/movit directory. 
Other relevant materials are the Saphira User’s Manual, the Aria documentation, and the Colbert 

User’s Manual. 
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2 Moving the Robot in Saphira 
There are two control interfaces to robot motion that can be utilized in Saphira.  Figure 2-1 diagrams 

the difference between these interfaces. 
1. Direct control.  In this mode, user programs communicate directly to the motor controller on 

the robot, and request movement along two independent motion channels, translation and 
rotation.  This mode is generally thought of as a monolithic controller, because the control 
computation occurs inside a monolithic block, and the results are used directly to control 
robot motion. 

2. Behavioral control.  In this mode, motion is mediated by sets of behavioral actions, which 
are schemas for determining motion based on sensory input and internal state.  The results of 
behavioral actions are combined by a resolver to produce motion.  This method is an indirect 
or partitioned way of controlling robot motion, since the end result is made up of a 
contribution from many smaller modules. 

Which interface is best depends on the application.  Both interfaces are always present, and programs 
can switch between them, depending on the needs of the moment. 

In general, direct control is preferable when the user’s program performs a monolithic computation of 
the best motion for the robot to take.  The output of the computation can be applied directly to the robot, 
using the direct motion commands. 

Another case where direct control works well is in writing complex sequences of movements.  For 
example, suppose you want to write a control sequence for getting the robot unstuck after bumping into 
something.  A simple sequence would be to back the robot up a small amount (and check if it hit anything 
in backing up!), turn a bit, and then move forward, checking again if an obstacle is there.  This sequence 
can best be written as a finite-state control in Colbert, where at each state the control issues a direct 
motion command such as backing up. 

Behavioral control is more suited for applications that break down complex activities into small, 
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Figure 2-1  Two different ways of controlling robot motions.  Top: a monolithic (direct) motion 
controller.  Bottom: a partitioned (indirect) motion controller. 
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modular packages.  These packages typically combine sensing and action into a coherent behavior, hence 
the name.  For example, an Avoid behavior might slow the robot down and turn it away from an 
approaching obstacle.  This simple behavior could be combined with others, for example, a Goto behavior 
that moved the robot towards a goal.  By mixing behaviors in the right manner, programs can produce 
coherent activity. 

In Saphira, behaviors are called behavioral actions, or simply behaviors.  Sets of such actions, 
together with a resolver for mediating among them, comprise the behavioral control component of 
Saphira. 
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3 Direct Motion Control of the Wheels 
Pioneer, PeopleBot and Amigobot robots are differential-drive robots with two wheels on an axis that 

is approximately through the center of the robot.  Each wheel is coupled to an independently-driven 
motor, which also contains an encoder for feedback about the wheel motion.  A microcontroller on the 
robot implements a control algorithm for turning the wheels in a goal-oriented manner.  For example, to 
achieve a given velocity and heading, a feedback controller changes the motor power to move the velocity 
or heading to the desired value, and keep it there. The desired values are called setpoints.  In typical 
digital controllers, the power value is recalculated hundreds of times a second, to achieve a tight tracking 
of the setpoints.  Most bases provide such setpoints as part of their control electronics. 

3.1 Direct Motion Commands 
What are the choices for setpoints?  There are two control channels: rotation and translation.  For 

each of these channels, we can choose to have either a velocity or position setpoint.  (Why not 
acceleration?)  For example, we could choose to move the robot a distance d and turn it to an angle ? .  Or, 
we could choose to control the robots translational velocity v and rotational velocity ? .  Table 3.1 shows 
the possibilities for each of the control channels.  A particular control regime consists of one choice from 
each column.  You can also control the wheel velocity of each wheel independently, using the SetTVel2 
command. 

The direct motion interface allows you to work in any control regime, and to switch control regimes at 
will, by calling the indicated functions.  The lowercase functions are Colbert commands that can be 
invoked from Colbert activities, or the command-line interface.  The capitalized functions are member 
functions of an SfRobot object, the current robot.  SfRobot is a subclass of the Aria ArRobot class, 
and the direct motions functions are invoked as its member functions, e.g., 

 
SfROBOT->setVel(200) . 
 

A slight word of explanation on the form SfROBOT.  Saphira treats one robot object as the current 
robot; this robot object, of class SfRobot, is a static global variable, and always available as the macro 
SfROBOT. 

Note that the velocity and position control have very different effects on robot motion.  Calling 
setVel(100), for example, will start the robot moving until it attains a velocity of 100 mm/sec, and 
keep it moving at that speed.  On the other hand, calling move(100) will cause the robot to move 
forward 100 mm from its current position, and then stop.  

Rotational and translational velocities can be incremented, as well as set to a particular value. 
Rotational position has two functions: one for absolute angular position within the internal coordinate 

system, and one for relative position.  setDeltaHeading(?) moves the angular setpoint ?  degrees 

 Translation Rotation 
Velocity 
mm/sec 
deg/sec 

speed(v) 
setVel(int v)   

 

rotate(v) 
setRotVel(int ? )   

  
Position 

mm 
deg 

move(d) 
move(int d)   

 

turnto(?) 
setHeading(int ?) 

turn(?)  
setDeltaHeading(int ?) 

2 Wheels 
mm/sec 

setVel2(left, right) 
 

Stop stop 
stop() 

Table 3.1 Control channels and their setpoints 
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from its current position.  setHeading(?) moves the setpoint to the absolute position ? . 
Maximum values for velocity during positional commands move() and setHeading() are 

available through the setMaxTransVel() and setMaxRotVel() functions.  You can use these to 
make your robot move more slowly or more quickly during positioning commands. 

All of these control functions are interruptable, that is, issuing a new translational command 
interrupts the current robot translational motion by resetting the setpoint.  It may also switch regimes, 
e.g., if the previous command was a positional one, and the new one is for velocity, then translational 
control is switched from position to velocity. 

3.2 A Colbert Example 
It’s easy to use the direct motion commands from Colbert: there are special Colbert functions that 

map directly to direct motions (Table 3.1).  In the tutorial directory movit, the activity file movit.act 
contains several examples of activities that exercise the direct motion commands.  We’ll look at one of 
these, the patrol activity. 

We want the robot to patrol up and down between two goal points, repeating this activity a specified 
number of times.  We’ll use the direct motion commands of (1) turning to a heading, and (2) moving 
forward a given distance.   

The simplest way to realize the patrol activity is as a perpetual while loop, in which the direct turn 
and forward motion actions are executed in sequence.  Here is the proposed activity schema: 

This simple example illustrates three of the basic capabilities of the Colbert control language.  First, 
the two basic actions of turning and moving forward are sequenced within the body of the while loop.  
As each action is initiated, an internal monitor takes over, halting the further execution of the patrol 
activity  until the action is completed.  So, under the guidance of this activity, the robot turns to face the 
180o direction, then moves forward 1000 mm, then turns to the 0o direction, then moves forward another 
1000 mm.  The net effect is to move the robot back and forth between two points 1 meter apart. 

The enclosing while loop controls how many times the patrol motion is done.  The local variable a 
is a parameter to the activity; when the activity is invoked, for example with the call start 
patrol(4), this value is filled in with an integer.  On every iteration, the while condition checks 
whether a has been set to zero; if not, the variable is decremented and the loop continues.   (Note that, to 
make this an almost infinite loop, just invoke patrol with a negative argument.)  Using the variable a 
to keep track of the number of times the movement is done illustrates the capability of checking and 
setting internal variables, which can be very handy even for simple activities. 

The language of activities is based on ANSI C.  When an activity schema is defined, the keyword act 
signals the start of the schema.  The schema itself looks like a prototyped function definition in C.  
Constructs such as local variables, iteration, and conditionals are all available.  In addition, there are 
forms that relate specifically to robot action.  In this case, the actions are direct motion commands 
available to the robot: turning and moving forward.  When the activity schema is invoked, an activity 
executive interprets the statements in the schema according to a finite state semantics.  Direct motions 

act patrol(int a) 
{ 
  while (a != 0) 
    { 
      a = a-1; 
      turnto(180); 
      move(1000); 
      turnto(0); 
      move(1000); 
    } 
} 

Figure 3-1  A simple patrol activity 
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cause the executive to wait at a finite state node until the action is completed (or some escape condition 
holds, such as a timeout).  So, while the activity schema looks like a standard C function, its underlying 
semantics is based on finite state automata for robot control.  The user, who typically wants to sequence 
robot actions in the same way as he or she would sequence computer operations, can write control 
programs in a familiar operator language; the executive takes care of matching the activity schema 
statements to the finite state automaton semantics, so that the intended robot behavior is the result.  

3.3 Invoking the Patrol Activity 
A Colbert activity can be invoked from another activity, or directly from the Colbert command line 

interface.  For the patrol example, we first load the activity from the file movit.act, then invoke the 
activity using the start command.  This is the sequence of commands to use: 

 
cd ../tutor/movit; // connect to the movit directory 
load init.act;  // load the activity file 
start patrol(10);  // this command starts up the activity  

 
If you start up Saphira, and type in this sequence of commands, nothing will happen – you have to 

connect to a robot first, of course.  Only when Saphira is connected to a robot will motion commands have 
any effect.  Otherwise, the patrol activity will give an error at the first motion command, and suspend 
itself. 

The complete form of the start command is: 
 
 start schema(arg1, arg2, …) [name instance-name] 
         [timeout ticks] 
         [priority pri] 
         [suspend] 
         [noblock] 
 
schema is the name of the activity schema, as written in the activity file.  There should be as many 

arguments as parameters in the schema.  Colbert will perform simple type conversions, e.g., from floats to 
ints.   

The optional arguments control various aspects of the activity.  You can give this particular instance 
of the schema a unique name (otherwise it defaults to the schema name).  This is useful if you want to 
have multiple instances of the same activity schema. 

Activities can have an attached timer that monitors the duration of the activity.  If the timer expires, 
the activity is suspended.  The timer is initialized with the timeout argument, where ticks is the 
number of system cycles (100 ms) the activity is allowed to run. 

An activity can be invoked in a suspended state, so that it is present and ready to run, but not 
currently active. 

The noblock argument is useful when calling an activity from another activity.  It lets the caller 
keep running, while splitting off the new activity to execute in parallel.  The default behavior, when one 
activity calls another, is to wait for the called activity to complete before the caller continues with its 
program.  From the command line, all activities are implicitly started in a noblock state, since they start 
running while the command line processor continues to accept input. 

Once an activity is completed, it will still be present in the system, although it won’t be active.  To 
remove it completely, use the remove command, with the name of the activity.  You can also interrupt 
the activity at any point by sending it a signal with the interrupt command; the resume command 
resumes it.  All of these commands use the instance name of the activity, which is usually the same as the 
schema name. 
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4 Behavioral Control 
An alternative to direct motion control is, of course, indirect control.  Under an indirect control 

regime, complex actions are partitioned into smaller units, each of which suggests motions to perform (see 
Figure 2-1, bottom).   

Behavioral actions are implemented in Aria.  The smallest unit of behavior  is called an action.  
Actions are implemented as objects, and action types (or schemas) are the object classes.  There is one 
base class for actions, called ArAction, from which particular actions types are derived as subclasses.  
Examples of some action types can be found in Aria/examples/actionExample.cpp. 

Behavioral actions can the same types of control values as direct actions: translational velocity and 
position, and rotational velocity and heading.  But, since the outputs are meant to be combined, it is 
important that the current set of executing actions use the same control on each of the channels.  For 
example, if one action attempts to control the heading of the robot, and another tries to control rotational 
velocity, there is no way to combine these outputs.  It is up to the user to use a consistent control scheme 
across invoked actions.  We recommend using translational velocity and rotational heading as the 
standard action outputs for most uses. 

Action outputs are combined by a resolver.  In most cases, the default resolver provides a good way to 
combine actions: it is based on priority classes (see below).  In advanced programming, users can write 
their own resolvers; see the Aria documentation. 

4.1 The Action Evaluation Cycle 
The set of currently active actions is held on a list in the robot object SfROBOT.  On every cycle (100 

ms), each action object is evaluated to produce a translational and rotational output, along with a strength 
for each.  The strength, which varies from 0 to 1, indicates how strongly the action prefers to have this 
motion executed.  The output values for behavioral actions are described by a structure, 
ArActionDesired  (see Aria/include/ArActionDesired.h ). 

Once the outputs of all current actions have been computed, they are given to a resolver to determine 
what the final output will be.  There are many possible types of resolution strategies: averaging, winner-
take-all, competition, etc.  Users are free to define their own resolution strategies to fit particular 
application needs; these strategies are defined by subclass the ArResolver class.  Aria’s standard 
resolution strategy is a two-part resolution strategy (ArPriorityResolver) that is the default.   

In priority resolution, each action instance is given a priority number, which is a positive integer.  
Higher numbers indicate higher priority.  Within each priority class (defined as those objects that have the 
same priority number), the action outputs are averaged according to their strengths.  To determine the 
final motion, the priority classes are searched from highest to lowest.  An activation energy is initialized 
to 1 for the highest level, and the level “uses up” the activation according to the strength of its strongest 
action, i.e., a strength of 1 would use up all the activation, while a strength of 0 would use up none.  At 
the next level, the motion command is averaged in, but discounted by the activation energy remaining.  
Again, the level uses up activation based on the strength of its motion output. 

Priority resolution allows high-priority levels to completely block lower levels when they are strongly 
active.  But, it lets lower priority actions influence motion when the higher priority actions are only 
weakly activated.  For example, a GoTo action at a lower priority would remain active, as long as a 
higher-priority Avoid action did not detect an obstacle and try to avoid it.  The use of numeric 
activations allows a smooth transition between these behaviors. 

An example of the tradeoff of behavioral actions is the Wander activity, which contains two 
behavioral actions, the Forward and Swerve actions (tutor/crawl/crawl.cpp ).  The standard 
Saphira client starts up with suspended instances of the Wander activity.  If you enable it (by left-clicking 
in the Activities window), then the two actions will start up.  The Swerve instance has a priority of 20, 
and the Forward instance a priority of 10.  Thus, the robot will move forward at a moderate speed, until 
it encounters an obstacle.  At this point, the Swerve action will become dominant, and slow and turn the 
robot away from the obstacle.  Then, the Forward action takes over again.  Using just this simple 
tradeoff, the robot wanders around, without bumping into anything. 
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4.2 The Behavioral Action SfMovitAction 
In this section we’ll examine a behavioral action in detail.  The SfMovitAction subclass is 

defined in Saphira/tutor/movit/movit.cpp .  The purpose of the action is to turn the robot to a 
given heading, and move it forward a given distance.  It’s not a particularly useful action, but it will 
exercise the capabilities of the system. 

Here is the subclass definition: 
 
class SfMovitAction : public ArAction  
{ 
 public: 
  SFEXPORT SfMovitAction(int distance, int heading); // constructor  
  virtual ~SfMovitAction() {}; // nothing doing 
  // this defines the action 
  virtual ArActionDesired *fire(ArActionDesired currentDesired);   
  // if we need to reset distance to go  
  SFEXPORT void reset() { gone = 0; ax = SfROBOT ->getX();  
                          ay = SfROBOT ->getY(); } 
  // interface to Colbert 
  static SfMovitAction *invoke(int distance, int heading);  
  
protected: 
  ArActionDesired myDesired; // what the action wants to do 
  int myDistance, myHeading; // parameters to the action 
  int gone;   // how far we've gone 
  double ax, ay;  // old robot position 
};  
 
Although this might seem complicated, a lot of it is boilerplate to interface actions to the behavioral 

controller.  The first three functions, SfMovitAction, ~SfMovitAction, and run, are required.  
The code in fire() will contain the actual body of the action, which is where all the “action” is. 

The Reset() function is the only one not required.  We’ve defined it here to reset the parameters of 
the action, as an illustration of how we can affect an action under program control.  In this case, calling 
Reset() will zero out the distance the action thinks the robot has traveled. 

Private variables hold information the action needs for its processing.  Here, ax and ay hold the 
previous position of the robot, so we can accumulate the distance the robot has traveled, in the variable 
gone.  myDesired is the output of the action, and myDistance and myHeading hold the 
parameters. 

To interface actions to the Saphira/Colbert system, a special member function invoke() is defined 
statically.  invoke() acts like a constructor, and should return an instance of the action, using its 
arguments to set up the action parameters. 

4.3 The Action Constructor 
The action constructor mints a new action instance.  You can create actions instances directly using 

the new operator on the class, which invokes the constructor.  But, action instances created this way will 
not be seen by Colbert and the Saphira activity executive.  Within Saphira, the sfAddEvalAction is used to 
add the action class to the list of known actions, and then sfStartTask() can be used to start up 
instances of the action from C++ code, or the start operator from Colbert (Sections 4.5 and 4.6). 

Here is the text of the SfMovitAction constructor.  This constructor follows the pattern for all 
other constructors of action subclasses.  The only particular change is the number and type of arguments 
used by the action. 

 
SFEXPORT 
sfMovitAction::sfMovitAction(char *name, bool instance)  
    : ArAction("Movit") 
{ 
  myDistance = distance; 
  myHeading = heading; 
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  reset(); 
} 
 
Note the constructor chaining performed by calling ArAction(“Movit”)  in the prolog of the 

constructor.  This chaining is mandatory to set up the action instance correctly.  After that, the internal 
arguments are set by the constructor. 

4.4 The Action Body 
The action body is defined by the fire() function.  This function is called on every cycle that the 

action is active, and is responsible for determining the output of the action.  The output results are always 
returned as a pointer to an ArActionDesired structure.  Note that the fire() function also takes an 
ArActionDesired argument as input.  This input is set by the action executive to be the current state 
of outputs from (higher-priority) actions already evaluated; generally it is ignored for most actions. 

Here is the body of the SfMovitAction action.  Remember that this action is supposed to move the 
robot forward by its first argument, and turn it to the heading given by its second argument. 

 
SFEXPORT ArActionDesired * 
SfMovitAction::fire(ArActionDesired d) 
{ 
  // reset the actionDesired (must be done)  
  myDesired.reset(); 
 
  // check the distance to be traveled  
  double dx = ax - SfROBOT->getX(); 
  double dy = ay - SfROBOT->getY(); 
  ax = SfROBOT->getX();  // set new values 
  ay = SfROBOT->getY(); 
  int ds = (int)sqrt(dx*dx + dy*dy);  
  gone += (int)ds; 
  sfMessage("Running Movit, gone %d", gone);  
 
  if (gone >= myDistance) 
    { 
      sfMessage("Finished Movit"); 
      deactivate();  // turn off when done 
      return NULL; 
    } 
  else 
    { 
      myDesired.setHeading(myHeading); // control the heading  
      myDesired.setVel(200); // moderate speed 
    } 
  return &myDesired;  // return the desired controls 
} 
 
The arguments to the action are present as variables of the action instance; in this case, they are 

myDistance, and myHeading.  Other object variables, such as ax and ay, will persist over the 
lifetime of the object and can be used for extended computations over calls to the fire() function. 

The action body itself should not have a lot of computation, because it must share the 100 ms 
microtask execution cycle with many other processes.  Here, we just add in the incremental change in the 
robot’s position, using the information present in the current robot object SfROBOT.  The variable gone 
holds the accumulated distance the robot has moved since the action was instantiated (or since the last 
reset() call). 

To move the robot the desired distance, the distance traveled is checked against the given distance, 
and if it is not yet achieved, the action controls both heading and speed to achieve the goal.  This action is 
all-or-none: it either tries to fully control the robot motion, or leaves it completely alone.  For smoother 
integration with other actions, it would be useful to gradually decrease control over motion, say as the 
robot comes near to the goal.  Note that the default activation value on setHeading and setVel is 1.0, 
the maximum activation. 
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Once the desired distance has been traveled, the action deactivates itself.  For goal directed actions, 
such as this one, it is important to call deactivate() once their task is done.  Deactivation has two 
effects.  First, it frees up the action executive from having to process the fire() function any more.  
Second, it communicates to Saphira and Colbert that the action has completed.  If there are other activities 
that are waiting for the action to complete, they can then proceed. 

If an action does not want to control the movement of the robot, it can return a NULL pointer instead 
of the ArActionDesired pointer.  This is done when the action finishes. 

Actions that are continuing ones, rather than goal directed, will generally not deactivate themselves.  
For example, an action that keeps the robot from bumping into obstacles is a continuing action: it never 
achieves a goal position.  Continuing actions are usually deactivated from outside the action itself, e.g., by 
the Colbert executive. 

4.5 Interfacing the Action to Saphira/Colbert 
There are two parts to creating the Saphira and Colbert interface to an action.  First, the invoke() 

function must be defined statically, and serves as a function that can be called from Colbert, just as other 
functions made available with sfAddEvalFn.  Invoke() takes arguments that are Colbert types (ints, 
floats, and void * types), and returns an instance of the action.  For SfMovitAction, invoke() is 
defined as: 

 
SfMovitAction * 
SfMovitAction::invoke(int distance, int heading)  
{ 
  return new SfMovitAction(distance, heading);  
} 
 
In the file defining the action, we can add code to be executed when the file is loaded into Saphira, 

using then function sfLoadInit.  Just as in making a C++ function available to Colbert via the 
sfAddEvalFn interface, we make an action available to Colbert using the sfAddEvalAction 
interface.  Here is how it’s done for SfMovitAction: 

 
SFEXPORT void   // define interface to Colbert here  
sfLoadInit () 
{ 
  sfAddEvalAction("Movit", (void *)SfMovitAction::invoke, 2, sfINT, sfINT);  
} 
 
Just as for functions, actions available in Colbert take argument that are typed.  Here, there are 2 such 

arguments.  There is no need to give a return type for the invoke() function, since it is assumed to be a 
pointer to an action object. 

4.6 Invoking the Action 
Once the action is defined and added to Saphira and Colbert, it can be invoked from Colbert using the 

start command, just like a Colbert activity. 
The complete form of start is shown in the Colbert User’s Manual.  To start up the action, just use 
 
 start Movit(1000,95); 
 

which will start up the action with a distance argument of 1000 and a heading argument of 95.  An 
example of invoking the Movit action from Colbert is given in the tutor/movit/init.act  file, as 
the activity movit_act: 
 

act movit_act(int dist) 
{ 
  start Movit(dist, 90) priority 10; 
  remove Movit;   // get rid of the action 
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  stop;    // stop the robot 
} 

 
Here the activity invokes Movit, then waits until it is completed before removing it and halting the 

robot.  The appearance of deactivate() in the body of SfMovitAction::fire()  comes into play 
here: the Colbert activity will stay at the Movit action until it deactivates. 

 
From C++ programs, the action can be invoked by using the corresponding sfStartTask() 

function.  For example, here is a typical invocation: 
 
 sfStartTask(“Movit”, NULL, 0, 10, 0, 1000, 95); 
 
Here the second argument is the instance name; the default NULL means it will be the same as the 

schema name.  Timeout, priority, and suspension arguments are required, followed by the action 
parameters.  For a complete description of sfStartTask, see the Colbert User’s Manual. 

 

4.7 Turning Behavioral Actions On 
Behavioral actions and direct actions can conflict if they are invoked at the same time.  For example, 

suppose we define a bump-and-go activity to turn the robot away from obstacles that it bumps into.  This 
activity uses direct actions to back up and turn.  But the robot may be under the control of behavioral 
actions when it encounters and obstacle: it may be heading towards a goal position, using something like 
the SfMovitAction.  Now the direct actions and the behavioral actions are both trying to control the 
robot.  What happens? 

In situations like this, the direct actions always take priority.  While the robot is executing direct 
actions, it turns off the output of behavioral actions.  In fact, whenever a direct action is executed, 
behavioral actions remain off until they are explicitly turned back on.   

To turn behavioral actions on, use the behaviors command in Colbert, or the longer C++ function: 
 

SfROBOT->clearDirectMotion()  


