

SAPHIRA TUTORIAL

Motion Control: Direct Control and Behavioral Actions
Software version 8.1 (Saphira/Aria)

September 2002

? Kurt Konolige
SRI International
konolige@ai.sri.com

http://www.ai.sri.com/~konolige

Saphira Tutorial on Actions 2

1 Introduction __ 3

2 Moving the Robot in Saphira __ 4

3 Direct Motion Control of the Wheels __________________________________ 6

3.1 Direct Motion Commands__6

3.2 A Colbert Example ___7

3.3 Invoking the Patrol Activity __8

4 Behavioral Control __ 9

4.1 The Action Evaluation Cycle ___9

4.2 The Behavioral Action SfMovitAction _______________________________10

4.3 The Action Constructor __10

4.4 The Action Body __11

4.5 Interfacing the Action to Saphira/Colbert ________________________________12

4.6 Invoking the Action __12

4.7 Turning Behavioral Actions On __13

Saphira Tutorial on Actions 3

1 Introduction
This tutorial discusses methods for controlling a robot’s motion using the interfaces provided by

Saphira and Aria. Several examples of movement control are discussed; these examples can be run
directly on the robot or the simulator.

The purpose of this tutorial is to illustrate basic motion control, relative to the robot’s internal
geometry. The internal geometry is generated by integrating the robot’s motor encoders, which determine
how far the wheels have traveled. Because of imperfections in the wheels, slippage on the floor, and other
environmental factors, the internal geometry will only approximately reflect the actual geometry of the
robot motion. For example, controlling the robot to move along a straight line causes it to move in a
straight line according to the internal geometry, but its real motion will deviate from this ideal case,
eventually curving and moving away from a straight line in the real world. The only way to correct these
deviations is by localizing the robot through sensing of the environment. This subject is quite complex,
and is discussed in other tutorials. Here we assume all motion is with respect to the internal geometry.

Examples mentioned in the tutorial are available in the tutor/movit directory.
Other relevant materials are the Saphira User’s Manual, the Aria documentation, and the Colbert

User’s Manual.

Saphira Tutorial on Actions 4

2 Moving the Robot in Saphira
There are two control interfaces to robot motion that can be utilized in Saphira. Figure 2-1 diagrams

the difference between these interfaces.
1. Direct control. In this mode, user programs communicate directly to the motor controller on

the robot, and request movement along two independent motion channels, translation and
rotation. This mode is generally thought of as a monolithic controller, because the control
computation occurs inside a monolithic block, and the results are used directly to control
robot motion.

2. Behavioral control. In this mode, motion is mediated by sets of behavioral actions, which
are schemas for determining motion based on sensory input and internal state. The results of
behavioral actions are combined by a resolver to produce motion. This method is an indirect
or partitioned way of controlling robot motion, since the end result is made up of a
contribution from many smaller modules.

Which interface is best depends on the application. Both interfaces are always present, and programs
can switch between them, depending on the needs of the moment.

In general, direct control is preferable when the user’s program performs a monolithic computation of
the best motion for the robot to take. The output of the computation can be applied directly to the robot,
using the direct motion commands.

Another case where direct control works well is in writing complex sequences of movements. For
example, suppose you want to write a control sequence for getting the robot unstuck after bumping into
something. A simple sequence would be to back the robot up a small amount (and check if it hit anything
in backing up!), turn a bit, and then move forward, checking again if an obstacle is there. This sequence
can best be written as a finite-state control in Colbert, where at each state the control issues a direct
motion command such as backing up.

Behavioral control is more suited for applications that break down complex activities into small,

Sensors

 Computation

Motor
Controller

Sensors

Computation Motor
Controller

Computation

Computation

Resolver

Figure 2-1 Two different ways of controlling robot motions. Top: a monolithic (direct) motion
controller. Bottom: a partitioned (indirect) motion controller.

Saphira Tutorial on Actions 5

modular packages. These packages typically combine sensing and action into a coherent behavior, hence
the name. For example, an Avoid behavior might slow the robot down and turn it away from an
approaching obstacle. This simple behavior could be combined with others, for example, a Goto behavior
that moved the robot towards a goal. By mixing behaviors in the right manner, programs can produce
coherent activity.

In Saphira, behaviors are called behavioral actions, or simply behaviors. Sets of such actions,
together with a resolver for mediating among them, comprise the behavioral control component of
Saphira.

Saphira Tutorial on Actions 6

3 Direct Motion Control of the Wheels
Pioneer, PeopleBot and Amigobot robots are differential-drive robots with two wheels on an axis that

is approximately through the center of the robot. Each wheel is coupled to an independently-driven
motor, which also contains an encoder for feedback about the wheel motion. A microcontroller on the
robot implements a control algorithm for turning the wheels in a goal-oriented manner. For example, to
achieve a given velocity and heading, a feedback controller changes the motor power to move the velocity
or heading to the desired value, and keep it there. The desired values are called setpoints. In typical
digital controllers, the power value is recalculated hundreds of times a second, to achieve a tight tracking
of the setpoints. Most bases provide such setpoints as part of their control electronics.

3.1 Direct Motion Commands
What are the choices for setpoints? There are two control channels: rotation and translation. For

each of these channels, we can choose to have either a velocity or position setpoint. (Why not
acceleration?) For example, we could choose to move the robot a distance d and turn it to an angle ? . Or,
we could choose to control the robots translational velocity v and rotational velocity ? . Table 3.1 shows
the possibilities for each of the control channels. A particular control regime consists of one choice from
each column. You can also control the wheel velocity of each wheel independently, using the SetTVel2
command.

The direct motion interface allows you to work in any control regime, and to switch control regimes at
will, by calling the indicated functions. The lowercase functions are Colbert commands that can be
invoked from Colbert activities, or the command-line interface. The capitalized functions are member
functions of an SfRobot object, the current robot. SfRobot is a subclass of the Aria ArRobot class,
and the direct motions functions are invoked as its member functions, e.g.,

SfROBOT->setVel(200) .

A slight word of explanation on the form SfROBOT. Saphira treats one robot object as the current
robot; this robot object, of class SfRobot, is a static global variable, and always available as the macro
SfROBOT.

Note that the velocity and position control have very different effects on robot motion. Calling
setVel(100), for example, will start the robot moving until it attains a velocity of 100 mm/sec, and
keep it moving at that speed. On the other hand, calling move(100) will cause the robot to move
forward 100 mm from its current position, and then stop.

Rotational and translational velocities can be incremented, as well as set to a particular value.
Rotational position has two functions: one for absolute angular position within the internal coordinate

system, and one for relative position. setDeltaHeading(?) moves the angular setpoint ? degrees

 Translation Rotation
Velocity
mm/sec
deg/sec

speed(v)
setVel(int v)

rotate(v)
setRotVel(int ?)

Position

mm
deg

move(d)
move(int d)

turnto(?)
setHeading(int ?)

turn(?)
setDeltaHeading(int ?)

2 Wheels
mm/sec

setVel2(left, right)

Stop stop
stop()

Table 3.1 Control channels and their setpoints

Saphira Tutorial on Actions 7

from its current position. setHeading(?) moves the setpoint to the absolute position ? .
Maximum values for velocity during positional commands move() and setHeading() are

available through the setMaxTransVel() and setMaxRotVel() functions. You can use these to
make your robot move more slowly or more quickly during positioning commands.

All of these control functions are interruptable, that is, issuing a new translational command
interrupts the current robot translational motion by resetting the setpoint. It may also switch regimes,
e.g., if the previous command was a positional one, and the new one is for velocity, then translational
control is switched from position to velocity.

3.2 A Colbert Example
It’s easy to use the direct motion commands from Colbert: there are special Colbert functions that

map directly to direct motions (Table 3.1). In the tutorial directory movit, the activity file movit.act
contains several examples of activities that exercise the direct motion commands. We’ll look at one of
these, the patrol activity.

We want the robot to patrol up and down between two goal points, repeating this activity a specified
number of times. We’ll use the direct motion commands of (1) turning to a heading, and (2) moving
forward a given distance.

The simplest way to realize the patrol activity is as a perpetual while loop, in which the direct turn
and forward motion actions are executed in sequence. Here is the proposed activity schema:

This simple example illustrates three of the basic capabilities of the Colbert control language. First,
the two basic actions of turning and moving forward are sequenced within the body of the while loop.
As each action is initiated, an internal monitor takes over, halting the further execution of the patrol
activity until the action is completed. So, under the guidance of this activity, the robot turns to face the
180o direction, then moves forward 1000 mm, then turns to the 0o direction, then moves forward another
1000 mm. The net effect is to move the robot back and forth between two points 1 meter apart.

The enclosing while loop controls how many times the patrol motion is done. The local variable a
is a parameter to the activity; when the activity is invoked, for example with the call start
patrol(4), this value is filled in with an integer. On every iteration, the while condition checks
whether a has been set to zero; if not, the variable is decremented and the loop continues. (Note that, to
make this an almost infinite loop, just invoke patrol with a negative argument.) Using the variable a
to keep track of the number of times the movement is done illustrates the capability of checking and
setting internal variables, which can be very handy even for simple activities.

The language of activities is based on ANSI C. When an activity schema is defined, the keyword act
signals the start of the schema. The schema itself looks like a prototyped function definition in C.
Constructs such as local variables, iteration, and conditionals are all available. In addition, there are
forms that relate specifically to robot action. In this case, the actions are direct motion commands
available to the robot: turning and moving forward. When the activity schema is invoked, an activity
executive interprets the statements in the schema according to a finite state semantics. Direct motions

act patrol(int a)
{
 while (a != 0)
 {
 a = a-1;
 turnto(180);
 move(1000);
 turnto(0);
 move(1000);
 }
}

Figure 3-1 A simple patrol activity

Saphira Tutorial on Actions 8

cause the executive to wait at a finite state node until the action is completed (or some escape condition
holds, such as a timeout). So, while the activity schema looks like a standard C function, its underlying
semantics is based on finite state automata for robot control. The user, who typically wants to sequence
robot actions in the same way as he or she would sequence computer operations, can write control
programs in a familiar operator language; the executive takes care of matching the activity schema
statements to the finite state automaton semantics, so that the intended robot behavior is the result.

3.3 Invoking the Patrol Activity
A Colbert activity can be invoked from another activity, or directly from the Colbert command line

interface. For the patrol example, we first load the activity from the file movit.act, then invoke the
activity using the start command. This is the sequence of commands to use:

cd ../tutor/movit; // connect to the movit directory
load init.act; // load the activity file
start patrol(10); // this command starts up the activity

If you start up Saphira, and type in this sequence of commands, nothing will happen – you have to

connect to a robot first, of course. Only when Saphira is connected to a robot will motion commands have
any effect. Otherwise, the patrol activity will give an error at the first motion command, and suspend
itself.

The complete form of the start command is:

 start schema(arg1, arg2, …) [name instance-name]
 [timeout ticks]
 [priority pri]
 [suspend]
 [noblock]

schema is the name of the activity schema, as written in the activity file. There should be as many

arguments as parameters in the schema. Colbert will perform simple type conversions, e.g., from floats to
ints.

The optional arguments control various aspects of the activity. You can give this particular instance
of the schema a unique name (otherwise it defaults to the schema name). This is useful if you want to
have multiple instances of the same activity schema.

Activities can have an attached timer that monitors the duration of the activity. If the timer expires,
the activity is suspended. The timer is initialized with the timeout argument, where ticks is the
number of system cycles (100 ms) the activity is allowed to run.

An activity can be invoked in a suspended state, so that it is present and ready to run, but not
currently active.

The noblock argument is useful when calling an activity from another activity. It lets the caller
keep running, while splitting off the new activity to execute in parallel. The default behavior, when one
activity calls another, is to wait for the called activity to complete before the caller continues with its
program. From the command line, all activities are implicitly started in a noblock state, since they start
running while the command line processor continues to accept input.

Once an activity is completed, it will still be present in the system, although it won’t be active. To
remove it completely, use the remove command, with the name of the activity. You can also interrupt
the activity at any point by sending it a signal with the interrupt command; the resume command
resumes it. All of these commands use the instance name of the activity, which is usually the same as the
schema name.

Saphira Tutorial on Actions 9

4 Behavioral Control
An alternative to direct motion control is, of course, indirect control. Under an indirect control

regime, complex actions are partitioned into smaller units, each of which suggests motions to perform (see
Figure 2-1, bottom).

Behavioral actions are implemented in Aria. The smallest unit of behavior is called an action.
Actions are implemented as objects, and action types (or schemas) are the object classes. There is one
base class for actions, called ArAction, from which particular actions types are derived as subclasses.
Examples of some action types can be found in Aria/examples/actionExample.cpp.

Behavioral actions can the same types of control values as direct actions: translational velocity and
position, and rotational velocity and heading. But, since the outputs are meant to be combined, it is
important that the current set of executing actions use the same control on each of the channels. For
example, if one action attempts to control the heading of the robot, and another tries to control rotational
velocity, there is no way to combine these outputs. It is up to the user to use a consistent control scheme
across invoked actions. We recommend using translational velocity and rotational heading as the
standard action outputs for most uses.

Action outputs are combined by a resolver. In most cases, the default resolver provides a good way to
combine actions: it is based on priority classes (see below). In advanced programming, users can write
their own resolvers; see the Aria documentation.

4.1 The Action Evaluation Cycle
The set of currently active actions is held on a list in the robot object SfROBOT. On every cycle (100

ms), each action object is evaluated to produce a translational and rotational output, along with a strength
for each. The strength, which varies from 0 to 1, indicates how strongly the action prefers to have this
motion executed. The output values for behavioral actions are described by a structure,
ArActionDesired (see Aria/include/ArActionDesired.h).

Once the outputs of all current actions have been computed, they are given to a resolver to determine
what the final output will be. There are many possible types of resolution strategies: averaging, winner-
take-all, competition, etc. Users are free to define their own resolution strategies to fit particular
application needs; these strategies are defined by subclass the ArResolver class. Aria’s standard
resolution strategy is a two-part resolution strategy (ArPriorityResolver) that is the default.

In priority resolution, each action instance is given a priority number, which is a positive integer.
Higher numbers indicate higher priority. Within each priority class (defined as those objects that have the
same priority number), the action outputs are averaged according to their strengths. To determine the
final motion, the priority classes are searched from highest to lowest. An activation energy is initialized
to 1 for the highest level, and the level “uses up” the activation according to the strength of its strongest
action, i.e., a strength of 1 would use up all the activation, while a strength of 0 would use up none. At
the next level, the motion command is averaged in, but discounted by the activation energy remaining.
Again, the level uses up activation based on the strength of its motion output.

Priority resolution allows high-priority levels to completely block lower levels when they are strongly
active. But, it lets lower priority actions influence motion when the higher priority actions are only
weakly activated. For example, a GoTo action at a lower priority would remain active, as long as a
higher-priority Avoid action did not detect an obstacle and try to avoid it. The use of numeric
activations allows a smooth transition between these behaviors.

An example of the tradeoff of behavioral actions is the Wander activity, which contains two
behavioral actions, the Forward and Swerve actions (tutor/crawl/crawl.cpp). The standard
Saphira client starts up with suspended instances of the Wander activity. If you enable it (by left-clicking
in the Activities window), then the two actions will start up. The Swerve instance has a priority of 20,
and the Forward instance a priority of 10. Thus, the robot will move forward at a moderate speed, until
it encounters an obstacle. At this point, the Swerve action will become dominant, and slow and turn the
robot away from the obstacle. Then, the Forward action takes over again. Using just this simple
tradeoff, the robot wanders around, without bumping into anything.

Saphira Tutorial on Actions 10

4.2 The Behavioral Action SfMovitAction
In this section we’ll examine a behavioral action in detail. The SfMovitAction subclass is

defined in Saphira/tutor/movit/movit.cpp . The purpose of the action is to turn the robot to a
given heading, and move it forward a given distance. It’s not a particularly useful action, but it will
exercise the capabilities of the system.

Here is the subclass definition:

class SfMovitAction : public ArAction
{
 public:
 SFEXPORT SfMovitAction(int distance, int heading); // constructor
 virtual ~SfMovitAction() {}; // nothing doing
 // this defines the action
 virtual ArActionDesired *fire(ArActionDesired currentDesired);
 // if we need to reset distance to go
 SFEXPORT void reset() { gone = 0; ax = SfROBOT ->getX();
 ay = SfROBOT ->getY(); }
 // interface to Colbert
 static SfMovitAction *invoke(int distance, int heading);

protected:
 ArActionDesired myDesired; // what the action wants to do
 int myDistance, myHeading; // parameters to the action
 int gone; // how far we've gone
 double ax, ay; // old robot position
};

Although this might seem complicated, a lot of it is boilerplate to interface actions to the behavioral

controller. The first three functions, SfMovitAction, ~SfMovitAction, and run, are required.
The code in fire() will contain the actual body of the action, which is where all the “action” is.

The Reset() function is the only one not required. We’ve defined it here to reset the parameters of
the action, as an illustration of how we can affect an action under program control. In this case, calling
Reset() will zero out the distance the action thinks the robot has traveled.

Private variables hold information the action needs for its processing. Here, ax and ay hold the
previous position of the robot, so we can accumulate the distance the robot has traveled, in the variable
gone. myDesired is the output of the action, and myDistance and myHeading hold the
parameters.

To interface actions to the Saphira/Colbert system, a special member function invoke() is defined
statically. invoke() acts like a constructor, and should return an instance of the action, using its
arguments to set up the action parameters.

4.3 The Action Constructor
The action constructor mints a new action instance. You can create actions instances directly using

the new operator on the class, which invokes the constructor. But, action instances created this way will
not be seen by Colbert and the Saphira activity executive. Within Saphira, the sfAddEvalAction is used to
add the action class to the list of known actions, and then sfStartTask() can be used to start up
instances of the action from C++ code, or the start operator from Colbert (Sections 4.5 and 4.6).

Here is the text of the SfMovitAction constructor. This constructor follows the pattern for all
other constructors of action subclasses. The only particular change is the number and type of arguments
used by the action.

SFEXPORT
sfMovitAction::sfMovitAction(char *name, bool instance)
 : ArAction("Movit")
{
 myDistance = distance;
 myHeading = heading;

Saphira Tutorial on Actions 11

 reset();
}

Note the constructor chaining performed by calling ArAction(“Movit”) in the prolog of the

constructor. This chaining is mandatory to set up the action instance correctly. After that, the internal
arguments are set by the constructor.

4.4 The Action Body
The action body is defined by the fire() function. This function is called on every cycle that the

action is active, and is responsible for determining the output of the action. The output results are always
returned as a pointer to an ArActionDesired structure. Note that the fire() function also takes an
ArActionDesired argument as input. This input is set by the action executive to be the current state
of outputs from (higher-priority) actions already evaluated; generally it is ignored for most actions.

Here is the body of the SfMovitAction action. Remember that this action is supposed to move the
robot forward by its first argument, and turn it to the heading given by its second argument.

SFEXPORT ArActionDesired *
SfMovitAction::fire(ArActionDesired d)
{
 // reset the actionDesired (must be done)
 myDesired.reset();

 // check the distance to be traveled
 double dx = ax - SfROBOT->getX();
 double dy = ay - SfROBOT->getY();
 ax = SfROBOT->getX(); // set new values
 ay = SfROBOT->getY();
 int ds = (int)sqrt(dx*dx + dy*dy);
 gone += (int)ds;
 sfMessage("Running Movit, gone %d", gone);

 if (gone >= myDistance)
 {
 sfMessage("Finished Movit");
 deactivate(); // turn off when done
 return NULL;
 }
 else
 {
 myDesired.setHeading(myHeading); // control the heading
 myDesired.setVel(200); // moderate speed
 }
 return &myDesired; // return the desired controls
}

The arguments to the action are present as variables of the action instance; in this case, they are

myDistance, and myHeading. Other object variables, such as ax and ay, will persist over the
lifetime of the object and can be used for extended computations over calls to the fire() function.

The action body itself should not have a lot of computation, because it must share the 100 ms
microtask execution cycle with many other processes. Here, we just add in the incremental change in the
robot’s position, using the information present in the current robot object SfROBOT. The variable gone
holds the accumulated distance the robot has moved since the action was instantiated (or since the last
reset() call).

To move the robot the desired distance, the distance traveled is checked against the given distance,
and if it is not yet achieved, the action controls both heading and speed to achieve the goal. This action is
all-or-none: it either tries to fully control the robot motion, or leaves it completely alone. For smoother
integration with other actions, it would be useful to gradually decrease control over motion, say as the
robot comes near to the goal. Note that the default activation value on setHeading and setVel is 1.0,
the maximum activation.

Saphira Tutorial on Actions 12

Once the desired distance has been traveled, the action deactivates itself. For goal directed actions,
such as this one, it is important to call deactivate() once their task is done. Deactivation has two
effects. First, it frees up the action executive from having to process the fire() function any more.
Second, it communicates to Saphira and Colbert that the action has completed. If there are other activities
that are waiting for the action to complete, they can then proceed.

If an action does not want to control the movement of the robot, it can return a NULL pointer instead
of the ArActionDesired pointer. This is done when the action finishes.

Actions that are continuing ones, rather than goal directed, will generally not deactivate themselves.
For example, an action that keeps the robot from bumping into obstacles is a continuing action: it never
achieves a goal position. Continuing actions are usually deactivated from outside the action itself, e.g., by
the Colbert executive.

4.5 Interfacing the Action to Saphira/Colbert
There are two parts to creating the Saphira and Colbert interface to an action. First, the invoke()

function must be defined statically, and serves as a function that can be called from Colbert, just as other
functions made available with sfAddEvalFn. Invoke() takes arguments that are Colbert types (ints,
floats, and void * types), and returns an instance of the action. For SfMovitAction, invoke() is
defined as:

SfMovitAction *
SfMovitAction::invoke(int distance, int heading)
{
 return new SfMovitAction(distance, heading);
}

In the file defining the action, we can add code to be executed when the file is loaded into Saphira,

using then function sfLoadInit. Just as in making a C++ function available to Colbert via the
sfAddEvalFn interface, we make an action available to Colbert using the sfAddEvalAction
interface. Here is how it’s done for SfMovitAction:

SFEXPORT void // define interface to Colbert here
sfLoadInit ()
{
 sfAddEvalAction("Movit", (void *)SfMovitAction::invoke, 2, sfINT, sfINT);
}

Just as for functions, actions available in Colbert take argument that are typed. Here, there are 2 such

arguments. There is no need to give a return type for the invoke() function, since it is assumed to be a
pointer to an action object.

4.6 Invoking the Action
Once the action is defined and added to Saphira and Colbert, it can be invoked from Colbert using the

start command, just like a Colbert activity.
The complete form of start is shown in the Colbert User’s Manual. To start up the action, just use

 start Movit(1000,95);

which will start up the action with a distance argument of 1000 and a heading argument of 95. An
example of invoking the Movit action from Colbert is given in the tutor/movit/init.act file, as
the activity movit_act:

act movit_act(int dist)
{
 start Movit(dist, 90) priority 10;
 remove Movit; // get rid of the action

Saphira Tutorial on Actions 13

 stop; // stop the robot
}

Here the activity invokes Movit, then waits until it is completed before removing it and halting the

robot. The appearance of deactivate() in the body of SfMovitAction::fire() comes into play
here: the Colbert activity will stay at the Movit action until it deactivates.

From C++ programs, the action can be invoked by using the corresponding sfStartTask()

function. For example, here is a typical invocation:

 sfStartTask(“Movit”, NULL, 0, 10, 0, 1000, 95);

Here the second argument is the instance name; the default NULL means it will be the same as the

schema name. Timeout, priority, and suspension arguments are required, followed by the action
parameters. For a complete description of sfStartTask, see the Colbert User’s Manual.

4.7 Turning Behavioral Actions On
Behavioral actions and direct actions can conflict if they are invoked at the same time. For example,

suppose we define a bump-and-go activity to turn the robot away from obstacles that it bumps into. This
activity uses direct actions to back up and turn. But the robot may be under the control of behavioral
actions when it encounters and obstacle: it may be heading towards a goal position, using something like
the SfMovitAction. Now the direct actions and the behavioral actions are both trying to control the
robot. What happens?

In situations like this, the direct actions always take priority. While the robot is executing direct
actions, it turns off the output of behavioral actions. In fact, whenever a direct action is executed,
behavioral actions remain off until they are explicitly turned back on.

To turn behavioral actions on, use the behaviors command in Colbert, or the longer C++ function:

SfROBOT->clearDirectMotion()

