
Saphira Reference Manual

8.3.2

Generated by Doxygen 1.2.10

Sun Sep 7 18:05:49 2003

Contents

1 Saphira Module Index 1

1.1 Saphira Modules . 1

2 Saphira Hierarchical Index 3

2.1 Saphira Class Hierarchy . 3

3 Saphira Compound Index 5

3.1 Saphira Compound List . 5

4 Saphira Module Documentation 7

4.1 Gradient Navigation Module . 7

4.2 Module . 17

4.3 Laser Module . 18

4.4 Localization Module . 19

4.5 Laser Navigation And Localization 21

5 Saphira Class Documentation 23

5.1 Sf Class Reference . 23

5.2 SfArtifact Class Reference . 25

5.3 SfArtifactList Class Reference . 28

5.4 SfCorridor Class Reference . 29

5.5 SfDock Class Reference . 31

5.6 SfDrawable Class Reference . 32

5.7 SfGoal Class Reference . 33

ii CONTENTS

5.8 SfIrrfDevice Class Reference . 34

5.9 SfLaserDevice Class Reference . 35

5.10 SfPoint Class Reference . 37

5.11 SfRangeDevice Class Reference 38

5.12 SfRobot Class Reference . 40

5.13 SfSonarDevice Class Reference 41

5.14 SfTime Class Reference . 42

5.15 SfUTask Class Reference . 43

5.16 SfVector Class Reference . 45

5.17 SfWall Class Reference . 46

5.18 SfWin Class Reference . 48

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 1

Saphira Module Index

1.1 Saphira Modules

Here is a list of all modules:

Gradient Navigation Module . 7
Module . 17
Laser Module . 18
Localization Module . 19
Laser Navigation And Localization . 21

2 Saphira Module Index

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 2

Saphira Hierarchical Index

2.1 Saphira Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

ArAction
SfGradAction
SfGradFinalApproachAction

ArPose
SfPoseP
SfVectorSystem

ArRecurrentTask
asyncLaserScanProcessor
SfFlushTask
SfUpdateSampleTask

ArRobot
SfRobot . 40

SfJRobot
dlentry
fnentry
hentry
rtm
Sf . 23
SfActRegister
SfActTask
SfCellIndex

SfGradGrid
SfGrid

SfSamples
SfCorrSamples

4 Saphira Hierarchical Index

SfSonarSamples
SfColbertStream
SfDrawable . 32

SfArtifact . 25
SfCorridor . 29
SfDock . 31
SfGoal . 33
SfLaserScan
SfPoint . 37
SfRobot . 40
SfWall . 46
SfWallset

SfArtifactList . 28
SfGradGrid
SfGrid
SfLaserAsyncDraw
SfRangeDevice . 38

SfBandStereoDevice
SfIrrfDevice . 34
SfLaserDevice . 35
SfSonarDevice . 41

SfErrParams
SfFr
SfList
SfLogger
SfPtArray
SfRay
SfTime . 42
SfUTask . 43

SfMapper
SfVector . 45

SfVectorSystem
SfWin . 48
stream entry
ventry
yystype

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 3

Saphira Compound Index

3.1 Saphira Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:

Sf (Saphira system definition) . 23
SfArtifact (SfArtifact objects are Local Perceptual Space objects In-

herit from this class if you want to be drawn on the LPS
graphics window) . 25

SfArtifactList (SfArtifactList is a static class that holds the set of
current artifacts) . 28

SfCorridor (Corridor artifacts: center point, width and length) . . . 29
SfDock (Dock artifact, which is a pose and a name Draws as an orange

circle) . 31
SfDrawable (SfDrawable class To draw on the LPS graphics window,

inherit from the subclass SfArtifact (p. 25) Members vari-
ables here can be used to turn drawing on or off, change the
color) . 32

SfGoal (Goal artifact, which is a pose and a name Draws as a green
circle (with a line if it cares about heading)) 33

SfIrrfDevice (Irrf device class. Created by initialization of the Sf
(p. 23) static class) . 34

SfLaserDevice (Laser device class. Created by initialization of the
Sf (p. 23) static class) . 35

SfPoint (Point artifact, which is a position and direction Draws as a
circle) . 37

SfRangeDevice (SfRangeDevice is the Saphira class for range de-
vices, encapsulating the ArRangeDevice class) 38

SfRobot (SfRobot inherits the basic ArRobot, plus is an artifact so
it can be drawn) . 40

6 Saphira Compound Index

SfSonarDevice (Sonar device class. Created by initialization of the
Sf (p. 23) static class) . 41

SfTime (Unility timing class) . 42
SfUTask (Saphira class that encapsulates the Aria synchronous task) 43
SfVector (SfVector objects represent a vector by its endpoints) . . . 45
SfWall (Wall artifacts: center point, length) 46
SfWin (Abstract window class Purpose of this class is to make draw-

ing fns available without specifying any implementation E.g.,
could use FLTK, or a null implementation for no drawing) . . 48

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 4

Saphira Module
Documentation

4.1 Gradient Navigation Module

Functions

• void sfGradInit (void)
Initializes the gradient.

• void sfGradInitRes (int res, int turnRadius)
Initializes the gradient,.

• void sfGradSetMap (void ∗p)
Sets the map with an mcObject.

• void sfGradUseArtifacts (int useArtifacts)
Whether the gradient module should use artifacts (.wld files).

• void sfGradUseMap (int useMap)
Whether the gradient module should use grid maps (.map files).

• void sfGradUseSonar (int useSonar)
Whether the gradient module should use sonar data.

• void sfGradUseLaser (int useLaser)
Whether the gradient module should use laser data.

8 Saphira Module Documentation

• void sfGradSetGoal (float x, float y)
Sets the Gradient goal to this global point (in mm). The goal can be changed
at any time.

• int sfGradSetGoalByName (char ∗goalName)
Sets the Gradient goal to the position of this goal (looks it up from map data
by name). The goal can be changed at any time. Returns 1 if goal was there
and 0 if it wasn’t.

• void sfGradSetSpeed (int high, int mid, int back)
Sets the speed the robot travels at.

• void sfGradDoGoal (int which)
Whether the robot should be going to a goal or not.

• void sfGradStop (void)
Stops the robot going to goal and stops the robot.

• int sfGradStatus (void)
Gets the status of the gradient module.

• int sfGradIsActive (void)
Gets if the gradient module is active or not.

• void sfGradObsParams (int keepout, int decay)
Resets keep-out distance and decay distance; in mm.

• void sfGradSetDone (int close, int done)
Set how close we need to be to a goal to slow done or be done.

• void sfGradSetSonarBuffer (int which)
Tell the gradient which sonar buffer to use 1 current 2 cumulative 3 both (2
is the default).

• void sfGradSetLaserBuffer (int which)
Tell the gradient which laser buffer to use 1 current 2 cumulative 3 both (3
is the default).

• int sfGradGetSonarBuffer (void)
Gets which sonar buffer the gradient is using.

• int sfGradGetLaserBuffer (void)
Gets which laser buffer the gradient is using.

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

4.1 Gradient Navigation Module 9

• int sfGradGetCanBack (void)
Gets if the grad action can back up, 0 = no, 1 = when appropriate, 2 =
always.

• void sfGradSetCanBack (int canBack)
Gets if the grad action can back up, 0 = no, 1 = when appropriate, 2 =
always.

• void sfGradSetTurnRadius (int turnRadius)
Sets the turn radius needed to let it turn instead of back, make it back with
sfGradSetCanBack.

• int sfGradGetTurnRadius (void)
Gets the turn radius needed to let it turn instead of back, make sure it is
allowed to back up with with sfGradGetCanBack.

• void sfGradSetAcc (int acc)
Sets the acceleration used in driving the robot.

• void sfGradSetPnum (int n)
Set number of propagations, mostly for show.

• void sfGradSetMax (int width, int height)
Sets the size of the gradient window.

• void sfGradUseFinalApproach (int which)
Use the final approach action or not.

• void sfGradSetFinalApproachSpeed (int speed)
Sets the final approach speed.

• int sfGradGetFinalApproachSpeed (void)
Gets the final approach speed.

• void sfGradSetLocalPath (int dist)
Sets the global path distance in mm (> 0 turns it on).

• int sfGradGetLocalPath ()
Gets the global path distance in mm.

• void sfGradSetMaxLaserDist (int dist)
Sets the maximum laser distance in mm (> 0 turns it on).

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

10 Saphira Module Documentation

• int sfGradGetMaxLaserDist ()
Gets the maximum laser distance in mm that will be used for path planning.

• void sfGradSetMaxSonarDist (int dist)
Sets the maximum sonar distance in mm (> 0 turns it on).

• int sfGradGetMaxSonarDist ()
Gets the maximum sonar distance in mm that will be used for path planning.

• int sfGradLoadMap (char ∗name)
Loads a map for gradient, should be the same as localization (0 failure, 1
success).

4.1.1 Detailed Description

For efficient movement based on local obstacles and world maps, Saphira has
a realtime path planner based on the gradient method [Konolige, IROS 2000].
For planning paths and moving in a world map, the gradient module is typically
used with Markov Localization to keep the robot registered with a map as it
moves (sfLoc, sfLocLaser, and sfLocFl libraries).

Gradient Path Planning is a process for determining optimal paths for the robot,
in real time. These paths can take into account both local obstacles, sensed by
sonars and/or laser range-finder devices; and global map information such as
the location of walls and other structural obstacles. At each sync cycle (100
ms), the Gradient module calculates the lowest-cost path from a goal point or
set of goal points to the robot. The algorithm starts by considering a local
neighborhood connecting the robot and the goal or goals, and then expands
its search if no path is found. There is a user-settable limit on the size of the
neighborhood considered.

Gradient uses a square-cell grid as a cost field for determining good paths. You
can set the grid resolution; a typical resolution is 10 mm. The maximum size
of the grid can also be set.

Costs are calculated from a set of obstacles, obtained from pre-existing maps
and from local sensor readings. Here are the obstacles sources:

1. Artifacts in a world map. Load a world map, and call sfGradUse-
Artifacts(true).

2. A grid map created from the laser navigation software. A grid map is typi-
cally loaded into the localization system using mcLoadScanMap() (p. ??). To
access this map from the gradient module, use sfGradSetMap(mcGetObject()
(p. ??)). Finally, turn on grid map use by calling sfGradUseMap(true).

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

4.1 Gradient Navigation Module 11

Grid maps and world maps may both be used at the same time. In this case,
usually the grid map will contain the basic geometric information about the
world, while the artifacts are special areas for the robot, e.g., keep-out areas.

3. Laser and sonar readings. These can be turned on and off with sfGradUse-
Laser() (p. 15) and sfGradUseSonar() (p. 10).

The cost field radiates outward from obstacles, to create a safety cushion for
the robot. You can adjust this cushion using sfGradObsParams() (p. ??).

There is a local controller, implemented as an action (SfGradAction), that drives
the robot along the gradient path. This action controls the speed of the robot
in a parameterized fashion, and can be set with sfGradSetSpeed. A further
refinement for rectangular robots is the ability to back up when appropriate;
this behavior is controlled by sfGradSetCanBack and sfGradSetTurnRadius. If
the robot needs to turn more than 45 degrees to follow the path, it will see if
its turn radius is clear. If it isn’t, it will try to back up if possible, and turn
around when it is clear of obstacles.

Some relevant sample Colbert load files: flgrad.act - basic gradient, with-
out localization for localization with respect to a world, look at flloc.act
scan.act - localization and gradient using a grid map (from the Laser Local-
ization/Navigation module).

You can also use the gradient for a final approach to a given position, to do
this call sfGradUseFinalApproach... you will also want to adjust the gradient
obstacle parameters with sfGradObsParams and the done distance with sfGrad-
SetDone (the close dist is ignored for the final approach). You may want to set
the speed with sfGradSetFinalApproachSpeed.

Another refinement on gradient is to use a global path. In this approach, a first
global path is calculated to the goal, and then it is fixed. The robot calculates
a local gradient to a goal point at some distance ahead on the path. Compute
time is saved, because only the local path is updated on each cycle.

Set the global path with the boolean sfGradSetLocalPath(int dist) (p. 14).
When a new goal is given, the global path is calculated and stored, then used
as above. dist is the distance to look ahead on the global path; if 0, no global
path is used.

4.1.2 Function Documentation

4.1.2.1 int sfGradGetCanBack (void)

Gets if the grad action can back up, 0 = no, 1 = when appropriate, 2 = always.

Returns:
0 if the gradient action will never back up, 1 if it will back up when appro-
priate (see sfGradInitRes), and 2 it will back up all the time

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

12 Saphira Module Documentation

4.1.2.2 int sfGradGetLaserBuffer (void)

Gets which laser buffer the gradient is using.

Returns:
1 using current buffer, 2 using cumulative buffer, 3 using both

4.1.2.3 int sfGradGetLocalPath ()

Gets the global path distance in mm.

Sets the local path distance for the gradient module. In local movement, the
global path is computed and saved for a goal. A local path is computed to the
goal path at every iteration.

Returns:
the distance to look ahead on the global path (mm) Set to 0 to turn off the
local path.

4.1.2.4 int sfGradGetSonarBuffer (void)

Gets which sonar buffer the gradient is using.

Returns:
1 using current buffer, 2 using cumulative buffer, 3 using both

4.1.2.5 int sfGradGetTurnRadius (void)

Gets the turn radius needed to let it turn instead of back, make sure it is allowed
to back up with with sfGradGetCanBack.

Returns:
the radius that must be clear for the robot to turn more than 45 degrees

4.1.2.6 void sfGradInit (void)

Initializes the gradient.

Initializes the Gradient module. Should be called right after loading the Gradi-
ent library.

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

4.1 Gradient Navigation Module 13

4.1.2.7 void sfGradInitRes (int res, int turnRadius)

Initializes the gradient,.

Parameters:
res res in mm for grid cell resolution

turnRadius if turnRadius is 0 then it will use the normal parameters and
action for movement, buf it turnRadius is not 0 it will back up if the
robot needs to travel backwards and a circle with radius turnRadius
is obstructed

4.1.2.8 int sfGradLoadMap (char ∗ name)

Loads a map for gradient, should be the same as localization (0 failure, 1 suc-
cess).

Load a scan map for gradient from a file. Should be the same map as that used
for localization, but the resolution set by gradient can be different.

4.1.2.9 void sfGradObsParams (int keepout, int decay)

Resets keep-out distance and decay distance; in mm.

This sets the distance away from obstacles the gradient algorithm will stay.
(These set fcost and fdecay on my grad, see the header file for SfGrad.h and
class SfGradGrid for the information about this in C++).

Parameters:
keepout (mm) the distance from the obstacles not to never drive within

decay (mm) the distance from obstacles to avoid if possible

4.1.2.10 void sfGradSetCanBack (int canBack)

Gets if the grad action can back up, 0 = no, 1 = when appropriate, 2 = always.

Parameters:
canBack 0 if the gradient action will never back up, 1 if it will back up

when appropriate (see sfGradInitRes), and 2 it will back up all the
time

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

14 Saphira Module Documentation

4.1.2.11 void sfGradSetDone (int close, int done)

Set how close we need to be to a goal to slow done or be done.

Parameters:
close (mm) the distance away the robot is from the goal when it switches

to close mode

done (mm) the distance away the robot is from the goal when the gradient
decides its done

4.1.2.12 void sfGradSetLaserBuffer (int which)

Tell the gradient which laser buffer to use 1 current 2 cumulative 3 both (3 is
the default).

Parameters:
which 1 use current buffer, 2 use cumulative buffer, 3 use both

4.1.2.13 void sfGradSetLocalPath (int dist)

Sets the global path distance in mm (> 0 turns it on).

Sets the local path distance for the gradient module. In local movement, the
global path is computed and saved for a goal. A local path is computed to the
goal path at every iteration.

Parameters:
dist the distance to look ahead on the global path (mm) Set to 0 to turn

off the local path.

4.1.2.14 void sfGradSetMap (void ∗ p)

Sets the map with an mcObject.

Sets the grid map that the gradient will use. Typically the map is taken from
the localization module using a call to mcGetObject() (p. ??), so that the
gradient will use the same map that localization is. NOTE: The resolution of
the map must be the same as that of the gradient routines (sfGradInit call).

4.1.2.15 void sfGradSetMax (int width, int height)

Sets the size of the gradient window.

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

4.1 Gradient Navigation Module 15

Sets the maximum size (in mm) of the neighborhood considered by the Gradient
module. The neighborhood will expand until it reaches this size, in searching
for a valid path.

Parameters:
width maximum width in mm of neighborhood

height maximum height in mm of neighborhood

4.1.2.16 void sfGradSetMaxLaserDist (int dist)

Sets the maximum laser distance in mm (> 0 turns it on).

if this value is less than 0 it turns the maximum distance off, if this value is
greater than 0 and a laser reading is further from the robot than this distance
the laser reading is not added to the grid for use in path planning

4.1.2.17 void sfGradSetMaxSonarDist (int dist)

Sets the maximum sonar distance in mm (> 0 turns it on).

if this value is less than 0 it turns the maximum distance off, if this value is
greater than 0 and a sonar reading is further from the robot than this distance
the sonar reading is not added to the grid for use in path planning

4.1.2.18 void sfGradSetSonarBuffer (int which)

Tell the gradient which sonar buffer to use 1 current 2 cumulative 3 both (2 is
the default).

Parameters:
which 1 use current buffer, 2 use cumulative buffer, 3 use both

4.1.2.19 void sfGradSetSpeed (int high, int mid, int back)

Sets the speed the robot travels at.

Sets the speed the gradient module will use for different circumstances.

Parameters:
high the speed to travel at when there are no obstructions (mm/sec)

mid the speed to travel at when there is congestion (mm/sec)

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

16 Saphira Module Documentation

back the maximum speed for backwards travel (see sfGradInitRes)... it
will go slower than this if needed and will use the same parameters
high and mid above, but simply cap the backwards velocity at the one
given here

4.1.2.20 void sfGradSetTurnRadius (int turnRadius)

Sets the turn radius needed to let it turn instead of back, make it back with
sfGradSetCanBack.

Parameters:
turnRadius the radius that must be clear for the robot to turn more than

45 degrees

4.1.2.21 int sfGradStatus (void)

Gets the status of the gradient module.

Returns:
0 is idle, 1 is active, 2 is done, 3 is failed, 4 is searching

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

4.2 Module 17

4.2 Module

The irrf module is seperate from the normal Saphira distribution. It comes with
either a Irrf or a Irrf Integration kit from ActivMedia Robotics. For information
contact sales@activmedia.com.

If you have purchased either of these you should be able to download new
versions of this module from http://robots.activmedia.com/sicklrf

Do make sure your Saphira/versionIrrf file is the same version as your
Saphira/version.txt file. There is dependency checking in Linux already, but
not yet in the Windows installer. Its critical you’re using the same versions for
Saphira and its modules.

This module allows Saphira to use the ArIrrfDevice class in ARIA, for both
display and the gradient module. The normal localization does not use the irrf
as its an entirely different process, check out the irrf localization/navigation
module. The display of the irrf is in green dots scattered on the screen where
the irrf readings are. Note that by default Saphira readings close to each other
are filtered out.

Even if you do not have this module you can use the ArIrrfDevice class in
Saphira just like you use any of the other ARIA code (ie just compile it).

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

18 Saphira Module Documentation

4.3 Laser Module

Functions

• void sfStartLaser (char ∗port)
Connects the laser (NULL or ”” port means simulator).

• void sfStartLaserTcp (char ∗host, int port)
Connects the laser on a tcp port (NOT for the simulator).

• void sfStopLaser ()
Disconnects the laser.

4.3.1 Detailed Description

The laser module is seperate from the normal Saphira distribution. It comes
with either a Laser or a Laser Integration kit from ActivMedia Robotics. For
information contact sales@activmedia.com.

If you have purchased either of these you should be able to download new
versions of this module from http://robots.activmedia.com/Laser

Do make sure your Saphira/versionLaser file is the same version as your
Saphira/version.txt file. There is dependency checking in Linux already, but
not yet in the Windows installer. Its critical you’re using the same versions for
Saphira and its modules.

This module allows Saphira to use the ArSick (SICK Laser) class in ARIA,
for both display and the gradient module. The normal localization does not
use the laser as its an entirely different process, check out the laser localiza-
tion/navigation module. The display of the laser is in green dots scattered on
the screen where the laser readings are. Note that by default Saphira readings
close to each other are filtered out.

Even if you do not have this module you can use the ArSick class in Saphira
just like you use any of the other ARIA code (ie just compile it).

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

4.4 Localization Module 19

4.4 Localization Module

Functions

• void mcSonarInit (void)

Initializes the localization.

• void mcSonarInitRes (int res)

Initiailizes the localization using a particular grid size.

• void ∗ mcGetObject (void)

Gets an mc object (mostly for use with sfGradSetMap).

• void mcSetMove (int da, int ds, int tm)

Sets the delta angle (da) delta distance (ds) or delta time (tm) before loc fires
again.

• void mcUpdateRobotPose (int on)

call this with true (non-zero) to make the localization update the robot posi-
tion.

• void mcPrintDuringUpdates (int on)

If true this will print during localization updates, false it won’t.

• void mcSetGain (int pct)

Sets the gain of the sensor information in the update step.

• void mcSetGauss (float dx, float dth)

Centers the sample distribution on the center of the robot.

• void mcSetNumSamples (int n)

Sets the number of samples.

4.4.1 Detailed Description

This module is used localization. By itself it can only be used with the sonar to
localize in a vector (line) map. With the Laser Localization/Navigation module
it can be used with the laser in a grid map generated by a robot.

You can look at/load flloc.act to see how to use this module.

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

20 Saphira Module Documentation

4.4.2 Function Documentation

4.4.2.1 void mcSetGain (int pct)

Sets the gain of the sensor information in the update step.

Parameters:
pct sets the gain of the sensor information in the update step to the percent

pct. If pct is 0, no sensor information is used. Reasonable values range
from 10 to 50 percent, depending on the environment, the application,
and the sensors.

4.4.2.2 void mcSetGauss (float dx, float dth)

Centers the sample distribution on the center of the robot.

This centers the sample distribution onto the center of where the robot is. You
should probably change the robot position with sfJumpRobotAbs and then call
this.

Parameters:
dx the length of the size of the square to put the samples in
dth the difference in angle to put the samples within

4.4.2.3 void mcSetMove (int da, int ds, int tm)

Sets the delta angle (da) delta distance (ds) or delta time (tm) before loc fires
again.

Parameters:
da the amount turned before relocalizing (degrees)
ds the distance moved before relocalizing (mm)
tm the number of cycles to go after the robot stops before relocalizing (it

won’t localize after the robot stops if this parameter is 0) (cycles)

4.4.2.4 void mcSetNumSamples (int n)

Sets the number of samples.

All sample poses are reset to zero, and mcSetGauss may be called to re-center
the sample set on the robot.

Parameters:
n number of samples to use

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

4.5 Laser Navigation And Localization 21

4.5 Laser Navigation And Localization

Functions

• void mcLrfInit ()
Initializes the localization.

• void mcLrfInitRes (int res)
Initializes the localization with a particular size of grid.

• void mcLrfScanInit ()
Adds in the cumulative LRF buffer to map.

• int mcLoadScanMap (char ∗name)
Loads a scan map (returns 0 if failed to load, 1 if loaded).

4.5.1 Detailed Description

The laser Navigation and Localization module is seperate from the nor-
mal Saphira distribution. It comes with the complete Laser Mapping
and Navigation package ActivMedia Robotics. For information contact
sales@activmedia.com.

If you have purchased this module you should be able to download new versions
of this module from http://robots.activmedia.com/LaserNavigation

Do make sure your Saphira/versionNavigation file is the same version as your
Saphira/version.txt file. There is dependency checking in Linux already, but
not yet in the Windows installer. Its critical you’re using the same versions for
Saphira and its modules.

This module allows Saphira to use the the laser for Localization.

In addition to the documentation here, look at scan.act to see how to use these.

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

22 Saphira Module Documentation

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 5

Saphira Class
Documentation

5.1 Sf Class Reference

Saphira system definition.

#include <SfSystem.h>

Static Public Methods

• void init ()

initializes Saphira system, including Aria; called by the standard Saphira
client on startup.

• SfRobot ∗ robot ()

Current robot object; Saphira 8.0 has only one User programs can access this
with the SfROBOT macro.

• SfSonarDevice ∗ sonar ()

sonar device object.

• SfLaserDevice ∗ laser ()

laser device object.

• SfLaserDevice ∗ laser2 ()

laser device object.

24 Saphira Class Documentation

• SfIrrfDevice ∗ irrf ()
IR rangefinder device object.

• double getX ()
Gets the robot current X value, in mm.

• double getY ()
Gets the robot current Y value, in mm.

• double getTh ()
Gets the robot current heading, in degrees.

• ArPose getRwPose ()
Gets the robot current pose object.

Static Public Attributes

• SfArtifactList ∗ artList
artifact list.

• SfColbertStream ∗ ourColbert
main Colbert stream for reading/writing Colbert commands.

• SfFr ∗ frame
display frame; user programs can access this with the SfFRAME macro.

5.1.1 Detailed Description

Saphira system definition.

The Saphira system class is a static class that holds basic information about the
single robot server for which Saphira is the client. It has useful functions to get
the robot object, device buffers, artifact list, connections to the robot server,
and so on.

On startup of the standard Saphira client, all the items in the Sf class are
initialized by calling init() (p. 23).

The documentation for this class was generated from the following files:

• SfSystem.h
• SfSystem.cpp

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

5.2 SfArtifact Class Reference 25

5.2 SfArtifact Class Reference

SfArtifact objects are Local Perceptual Space objects Inherit from this class if
you want to be drawn on the LPS graphics window.

#include <SfLps.h>

Inheritance diagram for SfArtifact::

SfArtifact

SfDrawable

SfCorridor

SfDock

SfGoal

SfLaserScan

SfPoint

SfRobot

SfWall

SfWallset

Public Types

• enum Type { Robot, Point, Wall, Wallset, Corridor, Goal }

Public Methods

• void draw (SfWin ∗w)

This function is overridden by the artifact subclass to draw a particular ar-
tifact.

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

26 Saphira Class Documentation

• SfArtifact ()

Constructor, adds the artifact object to the artifact list.

• virtual ∼SfArtifact ()

Destructor, removes the artifact from the artifact list.

Public Attributes

• ArPose p

Current pose of the object.

5.2.1 Detailed Description

SfArtifact objects are Local Perceptual Space objects Inherit from this class if
you want to be drawn on the LPS graphics window.

The SfArtifact class is the standard way to draw objects on the LPS graphcis
window. Inheriting from this class lets a subclass define the draw(SfWin ∗)
(p. 25) function, which is called every time the graphics window is refreshed.
The SfArtifact class adds its objects to the artifact list, and removes them on
destruction. To turn off drawing of an artifact, use the visible flag (inherited
from the SfDrawable (p. 32) class).

See also:
SfWin (p. 48) , SfArtifactList (p. 28)

5.2.2 Member Enumeration Documentation

5.2.2.1 enum SfArtifact::Type

Enumeration values:
Robot Robot object.

Point Point object, draws as a circle.

Wall Wall object, draws as a line.

Wallset Wall set object, not currently used.

Corridor Corridor object, draws as a parallel pair of double lines.

Goal Goal object, draws as a circle for now.

The documentation for this class was generated from the following files:

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

5.2 SfArtifact Class Reference 27

• SfLps.h
• SfObjects.cpp

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

28 Saphira Class Documentation

5.3 SfArtifactList Class Reference

SfArtifactList is a static class that holds the set of current artifacts.

#include <SfLps.h>

Inheritance diagram for SfArtifactList::

SfArtifactList

SfDrawable

Public Methods

• SfVector & Bounds (void)
Returns the bounds of the artifacts in the artifact list The bounds are set
from the most recent world file read in.

Static Public Methods

• SfArtifactList ∗ current ()
Artifact list.

5.3.1 Detailed Description

SfArtifactList is a static class that holds the set of current artifacts.

All artifacts objects, when created, put themselves onto the global artifact list;
and they remove themselves when destroyed. User programs should not explic-
itly add or delete artifacts from this list. To stop an artifact from drawing, using
the visible flag. User programs can request several facts about the artifact list,
including its current bounds, which is set when a world is read in. They can
also request the artifact list itself, to cycle through the artifacts.

The documentation for this class was generated from the following files:

• SfLps.h
• SfObjects.cpp

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

5.4 SfCorridor Class Reference 29

5.4 SfCorridor Class Reference

Corridor artifacts: center point, width and length.

#include <SfLps.h>

Inheritance diagram for SfCorridor::

SfCorridor

SfArtifact

SfDrawable

Public Methods

• SfCorridor (double x, double y, double th, double w, double l)

Constructor using all parameters.

• SfCorridor ()

Constructor using default of zero.

• virtual ∼SfCorridor ()

Destructor.

• void draw (SfWin ∗w)

This function is overridden by the artifact subclass to draw a particular ar-
tifact.

Public Attributes

• double width

Width and length of the corridor, can be reset.

• double length

Width and length of the corridor, can be reset.

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

30 Saphira Class Documentation

5.4.1 Detailed Description

Corridor artifacts: center point, width and length.

The documentation for this class was generated from the following files:

• SfLps.h
• SfObjects.cpp

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

5.5 SfDock Class Reference 31

5.5 SfDock Class Reference

Dock artifact, which is a pose and a name Draws as an orange circle.

#include <SfLps.h>

Inheritance diagram for SfDock::

SfDock

SfArtifact

SfDrawable

Public Methods

• SfDock (double x, double y, double th, const char ∗name)
Constructor using all parameters.

• SfDock ()
Constructor with default 0,0,0.

• void draw (SfWin ∗w)
This function is overridden by the artifact subclass to draw a particular ar-
tifact.

• virtual ∼SfDock ()
Destructor.

5.5.1 Detailed Description

Dock artifact, which is a pose and a name Draws as an orange circle.

The documentation for this class was generated from the following files:

• SfLps.h
• SfObjects.cpp

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

32 Saphira Class Documentation

5.6 SfDrawable Class Reference

SfDrawable class To draw on the LPS graphics window, inherit from the subclass
SfArtifact (p. 25) Members variables here can be used to turn drawing on or
off, change the color.

#include <SfClass.h>

Inheritance diagram for SfDrawable::

SfDrawable

SfArtifact SfArtifactList SfGradGrid SfGrid SfLaserAsyncDraw SfRangeDevice

SfCorridor

SfDock

SfGoal

SfLaserScan

SfPoint

SfRobot

SfWall

SfWallset

SfSamples SfBandStereoDevice

SfIrrfDevice

SfLaserDevice

SfSonarDevice

Public Attributes

• bool visible

True if the object is to be drawn.

• int color

Color of the object; not yet implemented...

5.6.1 Detailed Description

SfDrawable class To draw on the LPS graphics window, inherit from the subclass
SfArtifact (p. 25) Members variables here can be used to turn drawing on or
off, change the color.

The documentation for this class was generated from the following file:

• SfClass.h

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

5.7 SfGoal Class Reference 33

5.7 SfGoal Class Reference

Goal artifact, which is a pose and a name Draws as a green circle (with a line
if it cares about heading).

#include <SfLps.h>

Inheritance diagram for SfGoal::

SfGoal

SfArtifact

SfDrawable

Public Methods

• SfGoal (double x, double y, double th, const char ∗name, bool use-
Heading)

Constructor using all parameters.

• SfGoal ()
Constructor with default 0,0,0.

• void draw (SfWin ∗w)
This function is overridden by the artifact subclass to draw a particular ar-
tifact.

• virtual ∼SfGoal ()
Destructor.

5.7.1 Detailed Description

Goal artifact, which is a pose and a name Draws as a green circle (with a line
if it cares about heading).

The documentation for this class was generated from the following files:

• SfLps.h
• SfObjects.cpp

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

34 Saphira Class Documentation

5.8 SfIrrfDevice Class Reference

Irrf device class. Created by initialization of the Sf (p. 23) static class.

#include <SfDevices.h>

Inheritance diagram for SfIrrfDevice::

SfIrrfDevice

SfRangeDevice

SfDrawable

Public Methods

• double getStartAngle ()
Start angle of laser scan wrt robot.

• double getEndAngle ()
End angle of laser scan wrt robot.

• bool isIrrfFlipped ()
Gets whether the laser is flipped over or not.

• double getDegrees ()
Gets the degrees the laser is scanning.

• double getIncrement ()
Gets the amount each scan increments.

5.8.1 Detailed Description

Irrf device class. Created by initialization of the Sf (p. 23) static class.

The documentation for this class was generated from the following files:

• SfDevices.h
• SfIrrfDev.cpp

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

5.9 SfLaserDevice Class Reference 35

5.9 SfLaserDevice Class Reference

Laser device class. Created by initialization of the Sf (p. 23) static class.

#include <SfDevices.h>

Inheritance diagram for SfLaserDevice::

SfLaserDevice

SfRangeDevice

SfDrawable

Public Methods

• bool start (char ∗port)

Start up the device.

• bool stop ()

Stop the device.

• double getStartAngle ()

Start angle of laser scan wrt robot.

• double getEndAngle ()

End angle of laser scan wrt robot.

• bool isLaserFlipped ()

Gets whether the laser is flipped over or not.

• double getDegrees ()

Gets the degrees the laser is scanning.

• double getIncrement ()

Gets the amount each scan increments.

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

36 Saphira Class Documentation

5.9.1 Detailed Description

Laser device class. Created by initialization of the Sf (p. 23) static class.

The documentation for this class was generated from the following files:

• SfDevices.h
• SfLaserDev.cpp

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

5.10 SfPoint Class Reference 37

5.10 SfPoint Class Reference

Point artifact, which is a position and direction Draws as a circle.

#include <SfLps.h>

Inheritance diagram for SfPoint::

SfPoint

SfArtifact

SfDrawable

Public Methods

• SfPoint (double x, double y, double th)
Constructor using all parameters.

• SfPoint ()
Constructor with default 0,0,0.

• void draw (SfWin ∗w)
This function is overridden by the artifact subclass to draw a particular ar-
tifact.

• virtual ∼SfPoint ()
Destructor.

5.10.1 Detailed Description

Point artifact, which is a position and direction Draws as a circle.

The documentation for this class was generated from the following files:

• SfLps.h
• SfObjects.cpp

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

38 Saphira Class Documentation

5.11 SfRangeDevice Class Reference

SfRangeDevice is the Saphira class for range devices, encapsulating the Ar-
RangeDevice class.

#include <SfDevices.h>

Inheritance diagram for SfRangeDevice::

SfRangeDevice

SfDrawable

SfBandStereoDevice SfIrrfDevice SfLaserDevice SfSonarDevice

Public Methods

• ArRangeBuffer ∗ getCurrent ()

Returns the current history buffer for the range device.

• ArRangeBuffer ∗ getAccum ()

Returns the accumulated history buffer for the range device.

• void lockDevice ()

Lock the range buffers while we fool with them.

• void unlockDevice ()

Unlock the buffers.

• const char ∗ getName ()

Name of the device.

Public Attributes

• ArRangeDevice ∗ ourRangeDevice

Aria range device class.

• bool accumDraw

Set this to draw the accum buffer.

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

5.11 SfRangeDevice Class Reference 39

• bool curDraw

Set this to draw the current buffer.

5.11.1 Detailed Description

SfRangeDevice is the Saphira class for range devices, encapsulating the Ar-
RangeDevice class.

Instead of subclassing ArRangeDevice, we include a pointer to one as part of
the class data. This way, the subclasses of ArRangeDevice can be accomodated.

User programs can access the current and accum buffers easily. Range device
buffers are made available in the Sf (p. 23) class.

See also:
Sf (p. 23)

The documentation for this class was generated from the following file:

• SfDevices.h

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

40 Saphira Class Documentation

5.12 SfRobot Class Reference

SfRobot inherits the basic ArRobot, plus is an artifact so it can be drawn.

#include <SfLps.h>

Inheritance diagram for SfRobot::

SfRobot

ArRobot SfArtifact

SfDrawable

SfJRobot

Public Methods

• void draw (SfWin ∗w)
This function is overridden by the artifact subclass to draw a particular ar-
tifact.

5.12.1 Detailed Description

SfRobot inherits the basic ArRobot, plus is an artifact so it can be drawn.

The documentation for this class was generated from the following files:

• SfLps.h
• SfObjects.cpp
• SfSystem.cpp

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

5.13 SfSonarDevice Class Reference 41

5.13 SfSonarDevice Class Reference

Sonar device class. Created by initialization of the Sf (p. 23) static class.

#include <SfDevices.h>

Inheritance diagram for SfSonarDevice::

SfSonarDevice

SfRangeDevice

SfDrawable

5.13.1 Detailed Description

Sonar device class. Created by initialization of the Sf (p. 23) static class.

The documentation for this class was generated from the following files:

• SfDevices.h
• SfSonarDev.cpp

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

42 Saphira Class Documentation

5.14 SfTime Class Reference

Unility timing class.

#include <SfClass.h>

Public Methods

• SfTime ()
Constructor, sets time to zero for this object.

• void Reset ()
Reset time to zero.

• int TimeMS ()
returns current time in milliseconds.

• int TimeUS ()
returns current time in microseconds.

5.14.1 Detailed Description

Unility timing class.

The documentation for this class was generated from the following files:

• SfClass.h
• SfUtil.cpp

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

5.15 SfUTask Class Reference 43

5.15 SfUTask Class Reference

Saphira class that encapsulates the Aria synchronous task.

#include <SfUTask.h>

Inheritance diagram for SfUTask::

SfUTask

SfMapper

Public Methods

• SfUTask (char ∗name, int priority)

Constructor, must be chained to by the subclass.

• virtual ∼SfUTask ()

Destructor.

• void suspendTask ()

Suspend the task.

• void resumeTask ()

Resume the task.

• virtual void process ()

Task main body, called every sync cycle.

Public Attributes

• int processState

Process state. Can be written to during normal processing, to set a user-
defined state. Should not be used to suspend or resume the uTask.

5.15.1 Detailed Description

Saphira class that encapsulates the Aria synchronous task.

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

44 Saphira Class Documentation

This Saphira micro-task class is a wrapper for the Aria synchronous task facility.
Each SfUTask object is has its process() (p. 43) function called during the 100
ms synchronous cycle.

There are functions for suspending and resuming the uTask, which can be called
from within process() (p. 43) or outside of it.

There is a tutorial program in the directory Saphira/tutor/task.

The documentation for this class was generated from the following files:

• SfUTask.h
• SfUTask.cpp

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

5.16 SfVector Class Reference 45

5.16 SfVector Class Reference

SfVector objects represent a vector by its endpoints.

#include <SfClass.h>

Inheritance diagram for SfVector::

SfVector

SfVectorSystem

Public Methods

• SfVector ()
Default constructor, all zero coords.

• SfVector (double xx1, double yy1, double xx2, double yy2)
Constructor, using endpoints.

5.16.1 Detailed Description

SfVector objects represent a vector by its endpoints.

The documentation for this class was generated from the following file:

• SfClass.h

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

46 Saphira Class Documentation

5.17 SfWall Class Reference

Wall artifacts: center point, length.

#include <SfLps.h>

Inheritance diagram for SfWall::

SfWall

SfArtifact

SfDrawable

Public Methods

• SfWall (double x1, double y1, double x2, double y2)

Constructor, using endpoint arguments.

• SfWall ()

Constructor, using defaults of zero.

• virtual ∼SfWall ()

Destructor.

• void draw (SfWin ∗w)

This function is overridden by the artifact subclass to draw a particular ar-
tifact.

Public Attributes

• double length

Length of wall, should not be reset.

• SfVector v

Vector representation, should not be reset.

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

5.17 SfWall Class Reference 47

5.17.1 Detailed Description

Wall artifacts: center point, length.

The documentation for this class was generated from the following files:

• SfLps.h
• SfObjects.cpp

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

48 Saphira Class Documentation

5.18 SfWin Class Reference

Abstract window class Purpose of this class is to make drawing fns available
without specifying any implementation E.g., could use FLTK, or a null imple-
mentation for no drawing.

#include <SfClass.h>

Public Types

• enum { FIRST, LAST, REMOVE }

Public Methods

• virtual void Vector (double, double, double, double)

draws a line.

• virtual void Vector (double, double, double, double, ArPose ∗)
draws a line relative to a pose; use NULL for the robot.

• virtual void Rectangle (double, double, double, double)

draws a rectangle.

• virtual void CRectangle (double, double, double, double)

draws a centered rectangle.

• virtual void CRectangle (double, double, double, double, ArPose ∗)
draws a centered rectangle relative to a pose; use NULL for the robot.

• virtual void Point (double, double)

draws a point.

• virtual void Point (double, double, ArPose ∗)
draws a point relative to a pose; use NULL for the robot.

• virtual void Polygon (int, double ∗, double ∗)
draws a polygon, using an array of points.

• virtual void Circle (double x, double y, double r)

draws a circle at x,y, with radius r.

• virtual void Circle (double x, double y, double r, ArPose ∗)

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

5.18 SfWin Class Reference 49

draws a circle relative to a pose; use NULL for the robot.

• virtual void Text (char ∗str, double x, double y)
draws a text string at location x,y.

• virtual void Text (char ∗str, double x, double y, ArPose ∗)
draws a text string at location x,y relative to a pose; use NULL for the robot.

• virtual void PenColor (int)
Sets the drawing pen color This holds until another pen color is set.

• virtual void Coords (double ∗x, double ∗y, int i, int j)
returns RW coords from screen i,j.

• void AddKeyHandler (int(∗fn)(int, int, SfWin ∗), int which=FIRST)
adds a keystroke handler to the window.

• void AddButtonHandler (int(∗fn)(int, int, int, int, SfWin ∗), int
which=FIRST)

adds a button press handler.

5.18.1 Detailed Description

Abstract window class Purpose of this class is to make drawing fns available
without specifying any implementation E.g., could use FLTK, or a null imple-
mentation for no drawing.

5.18.2 Member Enumeration Documentation

5.18.2.1 anonymous enum

Enumeration values:
FIRST Put a button or key handler at the beginning of the callback list.

LAST At the end.

REMOVE Remove it.

The documentation for this class was generated from the following files:

• SfClass.h
• SfStream.cpp

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

Index

∼SfArtifact
SfArtifact, 26

∼SfCorridor
SfCorridor, 29

∼SfDock
SfDock, 31

∼SfGoal
SfGoal, 33

∼SfPoint
SfPoint, 37

∼SfUTask
SfUTask, 43

∼SfWall
SfWall, 46

accumDraw
SfRangeDevice, 38

AddButtonHandler
SfWin, 49

AddKeyHandler
SfWin, 49

artList
Sf, 24

Bounds
SfArtifactList, 28

Circle
SfWin, 48

color
SfDrawable, 32

Coords
SfWin, 49

Corridor
SfArtifact, 26

CRectangle
SfWin, 48

curDraw
SfRangeDevice, 39

current
SfArtifactList, 28

draw
SfArtifact, 25
SfCorridor, 29
SfDock, 31
SfGoal, 33
SfPoint, 37
SfRobot, 40
SfWall, 46

FIRST
SfWin, 49

frame
Sf, 24

getAccum
SfRangeDevice, 38

getCurrent
SfRangeDevice, 38

getDegrees
SfIrrfDevice, 34
SfLaserDevice, 35

getEndAngle
SfIrrfDevice, 34
SfLaserDevice, 35

getIncrement
SfIrrfDevice, 34
SfLaserDevice, 35

getName
SfRangeDevice, 38

getRwPose
Sf, 24

getStartAngle

INDEX 51

SfIrrfDevice, 34
SfLaserDevice, 35

getTh
Sf, 24

getX
Sf, 24

getY
Sf, 24

Goal
SfArtifact, 26

grad
sfGradDoGoal, 8
sfGradGetCanBack, 11
sfGradGetFinalApproach-

Speed, 9
sfGradGetLaserBuffer, 12
sfGradGetLocalPath, 12
sfGradGetMaxLaserDist, 10
sfGradGetMaxSonarDist, 10
sfGradGetSonarBuffer, 12
sfGradGetTurnRadius, 12
sfGradInit, 12
sfGradInitRes, 12
sfGradIsActive, 8
sfGradLoadMap, 13
sfGradObsParams, 13
sfGradSetAcc, 9
sfGradSetCanBack, 13
sfGradSetDone, 13
sfGradSetFinalApproach-

Speed, 9
sfGradSetGoal, 8
sfGradSetGoalByName, 8
sfGradSetLaserBuffer, 14
sfGradSetLocalPath, 14
sfGradSetMap, 14
sfGradSetMax, 14
sfGradSetMaxLaserDist, 15
sfGradSetMaxSonarDist, 15
sfGradSetPnum, 9
sfGradSetSonarBuffer, 15
sfGradSetSpeed, 15
sfGradSetTurnRadius, 16
sfGradStatus, 16
sfGradStop, 8
sfGradUseArtifacts, 7

sfGradUseFinalApproach, 9
sfGradUseLaser, 7
sfGradUseMap, 7
sfGradUseSonar, 7

Gradient Navigation Module, 7

init
Sf, 23

irrf
Sf, 24

isIrrfFlipped
SfIrrfDevice, 34

isLaserFlipped
SfLaserDevice, 35

laser
Sf, 23
sfStartLaser, 18
sfStartLaserTcp, 18
sfStopLaser, 18

Laser Module, 18
Laser Navigation And Localization,

21
laser2

Sf, 23
laserNav

mcLoadScanMap, 21
mcLrfInit, 21
mcLrfInitRes, 21
mcLrfScanInit, 21

LAST
SfWin, 49

length
SfCorridor, 29
SfWall, 46

loc
mcGetObject, 19
mcPrintDuringUpdates, 19
mcSetGain, 20
mcSetGauss, 20
mcSetMove, 20
mcSetNumSamples, 20
mcSonarInit, 19
mcSonarInitRes, 19
mcUpdateRobotPose, 19

Localization Module, 19

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

52 INDEX

lockDevice
SfRangeDevice, 38

mcGetObject
loc, 19

mcLoadScanMap
laserNav, 21

mcLrfInit
laserNav, 21

mcLrfInitRes
laserNav, 21

mcLrfScanInit
laserNav, 21

mcPrintDuringUpdates
loc, 19

mcSetGain
loc, 20

mcSetGauss
loc, 20

mcSetMove
loc, 20

mcSetNumSamples
loc, 20

mcSonarInit
loc, 19

mcSonarInitRes
loc, 19

mcUpdateRobotPose
loc, 19

Module, 17

ourColbert
Sf, 24

ourRangeDevice
SfRangeDevice, 38

p
SfArtifact, 26

PenColor
SfWin, 49

Point
SfArtifact, 26
SfWin, 48

Polygon
SfWin, 48

process

SfUTask, 43
processState

SfUTask, 43

Rectangle
SfWin, 48

REMOVE
SfWin, 49

Reset
SfTime, 42

resumeTask
SfUTask, 43

Robot
SfArtifact, 26

robot
Sf, 23

Sf, 23
artList, 24
frame, 24
getRwPose, 24
getTh, 24
getX, 24
getY, 24
init, 23
irrf, 24
laser, 23
laser2, 23
ourColbert, 24
robot, 23
sonar, 23

SfArtifact
∼SfArtifact, 26
Corridor, 26
draw, 25
Goal, 26
p, 26
Point, 26
Robot, 26
SfArtifact, 26
Wall, 26
Wallset, 26

SfArtifact, 25
Type, 26

SfArtifactList
Bounds, 28

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 53

current, 28
SfArtifactList, 28
SfCorridor

∼SfCorridor, 29
draw, 29
length, 29
SfCorridor, 29
width, 29

SfCorridor, 29
SfDock

∼SfDock, 31
draw, 31
SfDock, 31

SfDock, 31
SfDrawable

color, 32
visible, 32

SfDrawable, 32
SfGoal

∼SfGoal, 33
draw, 33
SfGoal, 33

SfGoal, 33
sfGradDoGoal

grad, 8
sfGradGetCanBack

grad, 11
sfGradGetFinalApproachSpeed

grad, 9
sfGradGetLaserBuffer

grad, 12
sfGradGetLocalPath

grad, 12
sfGradGetMaxLaserDist

grad, 10
sfGradGetMaxSonarDist

grad, 10
sfGradGetSonarBuffer

grad, 12
sfGradGetTurnRadius

grad, 12
sfGradInit

grad, 12
sfGradInitRes

grad, 12
sfGradIsActive

grad, 8
sfGradLoadMap

grad, 13
sfGradObsParams

grad, 13
sfGradSetAcc

grad, 9
sfGradSetCanBack

grad, 13
sfGradSetDone

grad, 13
sfGradSetFinalApproachSpeed

grad, 9
sfGradSetGoal

grad, 8
sfGradSetGoalByName

grad, 8
sfGradSetLaserBuffer

grad, 14
sfGradSetLocalPath

grad, 14
sfGradSetMap

grad, 14
sfGradSetMax

grad, 14
sfGradSetMaxLaserDist

grad, 15
sfGradSetMaxSonarDist

grad, 15
sfGradSetPnum

grad, 9
sfGradSetSonarBuffer

grad, 15
sfGradSetSpeed

grad, 15
sfGradSetTurnRadius

grad, 16
sfGradStatus

grad, 16
sfGradStop

grad, 8
sfGradUseArtifacts

grad, 7
sfGradUseFinalApproach

grad, 9
sfGradUseLaser

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

54 INDEX

grad, 7
sfGradUseMap

grad, 7
sfGradUseSonar

grad, 7
SfIrrfDevice

getDegrees, 34
getEndAngle, 34
getIncrement, 34
getStartAngle, 34
isIrrfFlipped, 34

SfIrrfDevice, 34
SfLaserDevice

getDegrees, 35
getEndAngle, 35
getIncrement, 35
getStartAngle, 35
isLaserFlipped, 35
start, 35
stop, 35

SfLaserDevice, 35
SfPoint

∼SfPoint, 37
draw, 37
SfPoint, 37

SfPoint, 37
SfRangeDevice

accumDraw, 38
curDraw, 39
getAccum, 38
getCurrent, 38
getName, 38
lockDevice, 38
ourRangeDevice, 38
unlockDevice, 38

SfRangeDevice, 38
SfRobot

draw, 40
SfRobot, 40
SfSonarDevice, 41
sfStartLaser

laser, 18
sfStartLaserTcp

laser, 18
sfStopLaser

laser, 18

SfTime
Reset, 42
SfTime, 42
TimeMS, 42
TimeUS, 42

SfTime, 42
SfUTask

∼SfUTask, 43
process, 43
processState, 43
resumeTask, 43
SfUTask, 43
suspendTask, 43

SfUTask, 43
SfVector

SfVector, 45
SfVector, 45
SfWall

∼SfWall, 46
draw, 46
length, 46
SfWall, 46
v, 46

SfWall, 46
SfWin

AddButtonHandler, 49
AddKeyHandler, 49
Circle, 48
Coords, 49
CRectangle, 48
FIRST, 49
LAST, 49
PenColor, 49
Point, 48
Polygon, 48
Rectangle, 48
REMOVE, 49
Text, 49
Vector, 48

SfWin, 48
sonar

Sf, 23
start

SfLaserDevice, 35
stop

SfLaserDevice, 35

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 55

suspendTask
SfUTask, 43

Text
SfWin, 49

TimeMS
SfTime, 42

TimeUS
SfTime, 42

Type
SfArtifact, 26

unlockDevice
SfRangeDevice, 38

v
SfWall, 46

Vector
SfWin, 48

visible
SfDrawable, 32

Wall
SfArtifact, 26

Wallset
SfArtifact, 26

width
SfCorridor, 29

Generated at Sun Sep 7 18:05:55 2003 for Saphira by Doxygen written by Dimitri van Heesch c© 1997-2001

