
Aria Reference Manual

1.3.2

Generated by Doxygen 1.2.10

Sun Sep 7 18:00:09 2003

Contents

1 ARIA overview 1

1.1 Introduction . 1

1.2 ARIA, Java, Python, Saphira, Colbert and the ActivMedia Basic
Suite . 2

1.3 License and Sharing . 3

1.4 The ARIA Package . 3

1.5 Documentation and Coding Convention 4

1.6 ARIA Client-Server . 4

1.7 Robot Communication . 5

1.8 ArRobot . 8

1.9 Range Devices . 11

1.10 Commands and Actions . 12

1.11 Robot Callbacks . 17

1.12 Functors . 17

1.13 User Input . 18

1.14 ARIA Threading . 19

1.15 ARIA Global Data . 20

1.16 Piecemeal Use of ARIA . 20

1.17 Robot Parameter Files . 21

1.18 Utility Classes . 22

1.19 Sockets . 23

1.20 Non-everyday use of C++ . 24

ii CONTENTS

2 Aria Hierarchical Index 27

2.1 Aria Class Hierarchy . 27

3 Aria Compound Index 33

3.1 Aria Compound List . 33

4 Aria Class Documentation 39

4.1 ArAction Class Reference . 39

4.2 ArActionAvoidFront Class Reference 43

4.3 ArActionAvoidSide Class Reference 45

4.4 ArActionBumpers Class Reference 47

4.5 ArActionConstantVelocity Class Reference 49

4.6 ArActionDesired Class Reference 51

4.7 ArActionDesiredChannel Class Reference 60

4.8 ArActionGoto Class Reference 61

4.9 ArActionGroup Class Reference 63

4.10 ArActionGroupInput Class Reference 66

4.11 ArActionGroupStop Class Reference 67

4.12 ArActionGroupTeleop Class Reference 68

4.13 ArActionGroupUnguardedTeleop Class Reference 69

4.14 ArActionGroupWander Class Reference 70

4.15 ArActionInput Class Reference 71

4.16 ArActionJoydrive Class Reference 73

4.17 ArActionKeydrive Class Reference 77

4.18 ArActionLimiterBackwards Class Reference 80

4.19 ArActionLimiterForwards Class Reference 82

4.20 ArActionLimiterTableSensor Class Reference 84

4.21 ArActionStallRecover Class Reference 86

4.22 ArActionStop Class Reference . 88

4.23 ArActionTurn Class Reference 90

4.24 ArACTS 1 2 Class Reference . 92

4.25 ArACTSBlob Class Reference . 97

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

CONTENTS iii

4.26 ArAMPTU Class Reference . 99

4.27 ArAMPTUCommands Class Reference 102

4.28 ArAMPTUPacket Class Reference 104

4.29 ArAnalogGyro Class Reference 106

4.30 ArArg Class Reference . 109

4.31 ArArgumentBuilder Class Reference 114

4.32 ArArgumentParser Class Reference 116

4.33 ArASyncTask Class Reference . 119

4.34 ArBasePacket Class Reference . 121

4.35 ArCommands Class Reference . 128

4.36 ArCondition Class Reference . 131

4.37 ArConfig Class Reference . 133

4.38 ArConfigGroup Class Reference 136

4.39 ArDeviceConnection Class Reference 137

4.40 ArDPPTU Class Reference . 143

4.41 ArDPPTUCommands Class Reference 149

4.42 ArDPPTUPacket Class Reference 151

4.43 ArFileParser Class Reference . 152

4.44 ArFunctor Class Reference . 154

4.45 ArFunctor1 Class Template Reference 157

4.46 ArFunctor1C Class Template Reference 159

4.47 ArFunctor2 Class Template Reference 163

4.48 ArFunctor2C Class Template Reference 165

4.49 ArFunctor3 Class Template Reference 170

4.50 ArFunctor3C Class Template Reference 173

4.51 ArFunctorASyncTask Class Reference 180

4.52 ArFunctorC Class Template Reference 181

4.53 ArGlobalFunctor Class Reference 184

4.54 ArGlobalFunctor1 Class Template Reference 186

4.55 ArGlobalFunctor2 Class Template Reference 189

4.56 ArGlobalFunctor3 Class Template Reference 193

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

iv CONTENTS

4.57 ArGlobalRetFunctor Class Template Reference 198

4.58 ArGlobalRetFunctor1 Class Template Reference 200

4.59 ArGlobalRetFunctor2 Class Template Reference 203

4.60 ArGlobalRetFunctor3 Class Template Reference 207

4.61 ArGripper Class Reference . 212

4.62 ArGripperCommands Class Reference 219

4.63 Aria Class Reference . 221

4.64 ArInterpolation Class Reference 226

4.65 ArIrrfDevice Class Reference . 228

4.66 ArJoyHandler Class Reference . 230

4.67 ArKeyHandler Class Reference 236

4.68 ArLine Class Reference . 240

4.69 ArLineSegment Class Reference 242

4.70 ArListPos Class Reference . 246

4.71 ArLog Class Reference . 247

4.72 ArLogFileConnection Class Reference 249

4.73 ArMath Class Reference . 254

4.74 ArMode Class Reference . 260

4.75 ArModeCamera Class Reference 264

4.76 ArModeGripper Class Reference 266

4.77 ArModeSonar Class Reference . 268

4.78 ArModeTeleop Class Reference 270

4.79 ArModeUnguardedTeleop Class Reference 272

4.80 ArModeWander Class Reference 274

4.81 ArModule Class Reference . 276

4.82 ArModuleLoader Class Reference 279

4.83 ArMutex Class Reference . 282

4.84 ArNetServer Class Reference . 284

4.85 ArP2Arm Class Reference . 287

4.86 ArPose Class Reference . 299

4.87 ArPoseWithTime Class Reference 303

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

CONTENTS v

4.88 ArPriorityResolver Class Reference 304

4.89 ArPTZ Class Reference . 305

4.90 ArRangeBuffer Class Reference 312

4.91 ArRangeDevice Class Reference 319

4.92 ArRangeDeviceThreaded Class Reference 327

4.93 ArRecurrentTask Class Reference 330

4.94 ArResolver Class Reference . 332

4.95 ArRetFunctor Class Template Reference 334

4.96 ArRetFunctor1 Class Template Reference 335

4.97 ArRetFunctor1C Class Template Reference 337

4.98 ArRetFunctor2 Class Template Reference 341

4.99 ArRetFunctor2C Class Template Reference 343

4.100ArRetFunctor3 Class Template Reference 349

4.101ArRetFunctor3C Class Template Reference 352

4.102ArRetFunctorC Class Template Reference 359

4.103ArRobot Class Reference . 362

4.104ArRobotConfigPacketReader Class Reference 418

4.105ArRobotPacket Class Reference 423

4.106ArRobotPacketReceiver Class Reference 425

4.107ArRobotPacketSender Class Reference 428

4.108ArRobotParams Class Reference 432

4.109ArRunningAverage Class Reference 437

4.110ArSectors Class Reference . 438

4.111ArSensorReading Class Reference 439

4.112ArSerialConnection Class Reference 444

4.113ArSick Class Reference . 451

4.114ArSickLogger Class Reference . 468

4.115ArSickPacket Class Reference . 471

4.116ArSickPacketReceiver Class Reference 474

4.117ArSignalHandler Class Reference 477

4.118ArSimpleConnector Class Reference 483

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

vi CONTENTS

4.119ArSocket Class Reference . 485

4.120ArSonarDevice Class Reference 492

4.121ArSonyPacket Class Reference 494

4.122ArSonyPTZ Class Reference . 496

4.123ArSyncTask Class Reference . 499

4.124ArTaskState Class Reference . 506

4.125ArTcpConnection Class Reference 507

4.126ArThread Class Reference . 513

4.127ArTime Class Reference . 517

4.128ArTransform Class Reference . 519

4.129ArTypes Class Reference . 522

4.130ArUtil Class Reference . 523

4.131ArVCC4 Class Reference . 534

4.132ArVCC4Commands Class Reference 540

4.133ArVCC4Packet Class Reference 542

4.134P2ArmJoint Class Reference . 543

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 1

ARIA overview

1.1 Introduction

ActivMedia Robotics Interface for Application (ARIA) Copyright 2002, Activ-
Media Robotics, LLC. All rights reserved.

Welcome to ARIA. The software is an object-oriented, robot control
applications-programming interface for ActivMedia Robotics’ line of intelligent
mobile robots.

Written in the C++ language, ARIA is client-side software for easy, high-
performance access to and management of the robot server, as well as to the
many accessory robot sensors and effectors. Its versatility and flexibility makes
ARIA an excellent foundation for higher-level robotics applications, including
SRI International’s Saphira and the ActivMedia Robotics Basic Suite.

ARIA can be run multi- or single-threaded, using its own wrapper around Linux
pthreads and WIN32 threads. Use ARIA in many different ways, from simple
command-control of the robot server for direct-drive navigation, to development
of higher-level intelligent actions (aka behaviors). For a description of how to
integrate parts of ARIA with your other code, see Piecemeal Use of ARIA
(p. 20).

This document contains an overview of ARIA. If you are browsing it in HTML,
click a class or function link to view its detail pages. New users should view
this document along with the ARIA examples.

You can download new versions of Aria (p. 221) from
http://robots.activmedia.com/ARIA

2 ARIA overview

1.2 ARIA, Java, Python, Saphira, Colbert and
the ActivMedia Basic Suite

ARIA is for C++ object-oriented programmers who want to have close control
of their robot. ARIA also is for those who have prepared robot-control software
and want to quickly and easily deploy it on one or more ActivMedia Robotics
mobile robot platforms.

ARIA now works in Java and Python! It has a Java wrapper and a Python
wrapper included with the base release. This means that you can write ARIA
programs in Java or Python as if ARIA itself was written in these languages.
This wrapper is automatically generated by SWIG (http://www.swig.org) at
each release, meaning that unlike three different implementations its consistent
between languages, all three languages get new features and are maintained, and
the many examples written for C++ ARIA are valid in the other languages.

There are a couple of more complicated/advanced features that don’t work
yet in these languages (you can use the classes in C++ that use the features,
but you can’t reimplement these features in the other languages). The only
unimplemented feature of SWIG is virtual function overloading which means
that you will not be able to make your own ArActions in Java or Python, but
you can always add them to the C++ library and use them in Java or Python.
For this deficiency the SWIG teams seems to be working on it so likely it will
disappear in the future. You also will not be able to make your own ArFunctors
for callbacks, but again where thats needed you can make objects in the C++
library and use them in Java or Python. For this deficiency language specific
workarounds could likely be written by users, which I could incorporate or if
there are large numbers of people using these wrappers we may develop these on
our own. Also if the SWIG team solves virtual function overloading then simple
classes to inherit from will remove the need for ArFunctors. Again though, you
can use any of the existing modules in C++ that use these advanced features
you just can’t use these advanced features in Java or Python.

Look in the javaExamples/README.txt file for directions on how to use the
Java wrapper and in the pythonExamples/README.txt for directions on how
to use the python wrapper.

For creating applications with built-in advanced robotics capabilities, including
gradient navigation and localization, as well as GUI controls with visual display
of robot platform states and sensor readings, consider using SRI International’s
Saphira version 8 or later. Saphira v8 is built on top of ARIA, so you have
access to all of ARIA’s functionality, as well as its Saphira enhancements.

Non-programmers may create their own robot-control routines easily and simply
with Saphira Colbert activity-building language. A Colbert editor, as well as
some very advanced robot control applications including Navigator and World-
Link, come in the Saphira/ARIA-based ActivMedia Basic Suite software. They

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.3 License and Sharing 3

give you GUI access to all the features of your ActivMedia robot, including
remote access across the global Internet.

Browse ActivMedia Robotics’ support webpages
http://www.activrobots.com and http://robots.activmedia.com for
these and many other mobile robotics resources.

1.3 License and Sharing

ARIA is released under the GNU Public License, which means that if you dis-
tribute any work which uses ARIA, you must distribute the entire source code
to that work. Read the included LICENSE text for details. We open-sourced
ARIA under GPL not only for your convenience, but also so that you will share
your enhancements to the software. If you wish your enhancements to make it
into the ARIA baseline, you will need to assign the copyright on those changes
to ActivMedia, contact aria-support@activmedia.com with these changes or
with questions about this.

Accordingly, please do share your work, and please sign up for the exclusive
ARIA-users@activmedia.com newslist so that you can benefit from others’
work, too.

ARIA may be licensed for proprietary, closed-source applications. Contact
sales@activmedia.com for details.

1.4 The ARIA Package

1.4.1 ARIA/

LICENSE GPL license; agree to this to use ARIA

INSTALL Step-wise instructions for installing ARIA

README Also see READMEs in advanced/, examples/, and tests/

docs/ Extensive documentation in HTML and PDF format

bin/ Win32 binaries and dlls (Linux binaries in src/)

examples/ ARIA examples -- a good place to start; see examples README

include/ ARIA include files, of course

lib/ Win32 .lib files and Linux .so files

params/ Robot definition (parameter) files (p2dx.p, for example)

src/ ARIA source (*.cpp) files and Linux executables

1.4.2 Other ARIA Files of Note

ARIA.dsp MSVC++ project file for building the ARIA libraries and examples

ARIA.dsw Associated MSVC++ workspace for building ARIA and examples

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4 ARIA overview

Makefile Linux makefile for building ARIA and examples

Makefile.dep Linux dependency

run Linux-only; builds and executes your ARIA applcation

tests/ Test files, somewhat esoteric but useful during ARIA development

utils/ Utility commands, not generally needed

advanced/ Advanced demos, not for the faint of heart (or ARIA novice)

1.5 Documentation and Coding Convention

For clarity while you read this technical document, we follow common C++
coding conventions:

1) Class names begin with a capital letter. 2) Enums either begin with a capital
letter or are all in caps. 3) Avoid defines whenever possible. 4) Member variables
in classes are prefixed with ’my’. 5) Static variables in classes are prefixed with
’our’. 6) Member function names start with a lower case. 7) Capitalize each
word except the first one in a name; likeThisForExample. 8) Write all code so
that it can be used threaded.

1.6 ARIA Client-Server

For those of you who are familiar with SRI International’s Saphira software
and ActivMedia Robotics’ mobile robots and their related technologies, the
underlying client-server control architecture for the mobile platform, sensors,
and accessories hasn’t changed much in ARIA. It’s just gotten a lot better and
more accessible.

The mobile servers, embodied in the Pioneer 2 and AmigoBot Operating Sys-
tem software and found embedded on the robot’s microcontroller, manage the
low-level tasks of robot control and operation, including motion, heading and
odometry, as well as acquiring sensor information (sonar and compass, for ex-
ample) and driving accessory components like the PTZ camera, TCM2 com-
pass/inclinometer, and the Pioneer 5-DOF Arm. The robot servers do not,
however, perform robotic tasks.

Rather, it is the job of an intelligent client running on a connected PC to per-
form the full gamut of robotics control strategies and tasks, such as obstacle
detection and avoidance, sensor fusion, localization, features recognition, map-
ping, intelligent navigation, PTZ camera control, Arm motion, and much more.
ARIA’s role is on that intelligent client side.

Nearest the robot, ARIA’s ArDeviceConnection (p. 137) class, at the be-
hest of your application code, establishes and maintains a communication chan-
nel with the robot server, packaging commands to (ArRobotPacketSender
(p. 428)) and decoding responses (ArRobotPacketReceiver (p. 425)) from the

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.7 Robot Communication 5

robot in safe and reliable packet formats (ArRobotPacket (p. 423)) prescribed
by the client-server protocols.

At its heart, ARIA’s ArRobot (p. 362) class collects and organizes the robot’s
operating states, and provides clear and convenient interface for other ARIA
components, as well as upper-level applications, to access that robot state-
reflection information for assessment, planning, and ultimately, intelligent, pur-
poseful control of the platform and its accessories.

ArRobot (p. 362)’s heart metaphor is particularly apt, too, since one of its
important jobs is to maintain the clockwork cycles and multi-threaded rhythms
of the robot-control system. Keyed to the robot’s main information-packet
cycle (hence, no longer a fixed timing cycle), ArRobot (p. 362)’s syncronous
tasks (ArSyncTask (p. 499)) include the robot server-information packet han-
dlers, sensor interpreters, action handlers, state reflectors, user tasks, and more.
And your software may expand, replace, remove, and rearrange the list of
synchronized tasks through ArRobot (p. 362)’s convenient sensor interp (Ar-
Robot::addSensorInterpTask (p. 384)) and user task (ArRobot::addUser-
Task (p. 384)) related methods.

Through its Action class, ARIA provides a flexible, programmable mechanism
for behavior-level control of the robot server. An associated Resolver class lets
you organize and combine actions, for coordinated motion control and intel-
ligent guidance. With ARIA actions, you easily develop integrated guarded-
teleoperation and color-blob tracking applications, for example.

ARIA also includes clear and convenient interface for applications to access and
control ActivMedia Robotics accessory sensors and devices, including operation
and state reflection for sonar and laser range finders, pan-tilt units, arms, inertial
navigation devices, and many others.

The versatility and ease of access to ARIA code (sources included!) makes it
the ideal platform for robotics client applications development.

1.7 Robot Communication

One of the most important functions of ARIA, and one of the first and necessary
things that your application must do, is to establish and manage client-server
communications between your ARIA-based software client and the robot’s on-
board servers and devices.

1.7.1 Connecting with a Robot or the Simulator

ArDeviceConnection (p. 137) is ARIA’s communications object; ArSerial-
Connection (p. 444) and ArTcpConnection (p. 507) are its built-in children
most commonly used to manage communication between an ActivMedia robot

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

6 ARIA overview

or the SRIsim robot simulator, respectively. These classes are not device-
specific, however, so use ArSerialConnection (p. 444), for instance, to also
configure a serial port and establish a connection with a robot accessory, such
as with the SICK laser range finder.

You can also use a convenience class called ArSimpleConnector (p. 483) to
do the connection for you, this is used in examples/demo, examples/wander,
examples/teleop to name a few. This also will take and parse command line
arguments so that you don’t need to recompile to change where you want to
connect. Among other benefits the ArSimpleConnector (p. 483) will try to
connect to a simulator if one is running otherwise it’ll connect to a serial port...
so you don’t have to recompile your program for either mode, just don’t have a
simulator running, or have one running.

Do note that some accessories, such as the P2 Gripper, PTZ camera, P2 Arm,
compass, and others, which attach to the robot’s microcontroller AUX serial
port, are controlled through the client-side device connection with the robot.
Use different methods and procedures other than ArDeviceConnection
(p. 137) to communicate with and manage those devices through ARIA.

1.7.2 Opening the Connection

After creating and opening a device connection, associate it with its ARIA device
handlers, most commonly with ArRobot::setDeviceConnection (p. 410) for
the robot or the simulator.

For example, early in an ARIA program, specify the connection device and
associate it with the robot:

ArTcpConnection (p. 507) con;

ArRobot (p. 362) robot;

Later in the program, after initializing the ARIA system (Aria::init() (p. 224);
is mandatory), set the Connection port to its default values (for TCP, host is
”localhost” and port number is 8101), and then open the port:

con.setPort();

if (!con.openSimple())

{
printf("Open failed.");

Aria::shutdown() (p. 225);

return 1;

}

TCP and Serial connections have their own implementation of open which is
not inherited, but has default arguments that make the generic open work for

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.7 Robot Communication 7

the all default cases. And open returns a status integer which can be passed to
the re-implemented and inherited ArDeviceConnection::getOpenMessage
(p. 139) in order to retrieve related status string, which is useful in reporting
errors to the user without having to know about the underlying device.

1.7.3 Robot Client-Server Connection

After associating the device with the robot, now connect with the robot’s servers,
ArRobot::blockingConnect (p. 387) or ArRobot::asyncConnect (p. 385),
for example, to establish the client-server connection between ARIA ArRobot
(p. 362) and the ActivMedia robot microcontroller or SRIsim simulated server.
The blockingConnect method doesn’t return from the call until a connection
succeeds or fails:

robot.setDeviceConnection(&con);

if (!robot.blockingConnect())

{
printf("Could not connect to robot... Exiting.");

Aria::shutdown() (p. 225);

return 1;

}

The previous examples connect with the SRIsim simulator through a TCP socket
on your PC. Use tcpConn.setPort(host, port) to set the TCP hostname or IP
address and related socket number to another machine on the network. For
instance, use tcpConn.setPort(”bill”, 8101); to connect to the Simulator which
is running on the networked computer ”bill” through port 8101.

Replace ArTcpConnection (p. 507) con; with ArSerialConnection (p. 444)
con; to connect with a robot through the default serial port /dev/ttyS0 or
COM1, or another you specify with con.setPort, such as con.setPort(”COM3”);.

At some point, you may want to open the port with the more verbose
con.open();.

1.7.4 Connection Read, Write, Close and Timestamping

The two main functions of a device connection are ArDevice-
Connection::read (p. 141) and ArDeviceConnection::write (p. 141).
Simple enough. ArDeviceConnection::close (p. 139) also is inherited and
important. You probably won’t use direct read or write to the robot device,
although you could. Rather, ArRobot (p. 362) provides a host of convenient
methods that package your robot commands, and gather and distribute the
various robot information packets, so that you don’t have to attend those
mundane details. See the next section for details.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

8 ARIA overview

All ArDeviceConnection (p. 137) subclasses have support for timestamping
(ArDeviceConnection::getTimeRead (p. 140)). With the robot connection,
timestamping merely says what time a robot SIP came in, which can be useful
for interpolating the robot’s location more precisely.

1.8 ArRobot

As mentioned earlier, ArRobot (p. 362) is the heart of ARIA, acting as client-
server communications gateway, central database for collection and distribu-
tion of state-reflection information, and systems synchronization manager. Ar-
Robot (p. 362) is also the gathering point for many other robot tasks, including
syncTasks, callbacks, range-finding sensor and Actions classes.

1.8.1 Client Commands and Server Information Packets

Client-server communications between applications software and an ActivMedia
robot or the Simulator must adhere to strict packet-based protocols. The gory
details can be found in several other ActivMedia Robotics publications, includ-
ing the Pioneer 2 Operations Manual and the AmigoBot Technical Manual.
Suffice it to say here that ArRobot (p. 362) handles the low-level details of
constructing and sending a client-command packets to the robot as well as re-
ceiving and decoding the various Server Information Packets from the robot.

1.8.2 Packet Handlers

Server Information Packets (SIPs) come from the robot over the robot-device
connection and contain operating information about the robot and its acces-
sories. Currently, there are two types of SIPs: the standard SIP and extended
SIPs. The standard SIP gets sent by the robot to a connected client automati-
cally every 100 (default) or 50 milliseconds. It contains the robot’s current po-
sition, heading, translational and rotational speeds, freshly accumulated sonar
readings, and much more. These data ultimately are stored and distributed by
ArRobot (p. 362)’s State Reflection (see State Reflection (p. 10) below).

Extended SIPs use the same communication-packet protocols as the standard
SIP, but with a different ”type” specification and, of course, containing different
operating information, such as I/O port readings or accessory device states like
for the Gripper. And, whereas the standard SIP gets sent automatically once
per cycle, your client controls extended packet communications by explicitly
requesting that the server send one or more extended SIPs.

ArRobot (p. 362)’s standard SIP handler automatically runs as an ArRobot
(p. 362) synchronized task. Other SIP handlers are built in, but your client must

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.8 ArRobot 9

add each to the connected robot object, and hence to the SIP handler sync task
list, for it to take effect. See examples/gripperDemo.cpp for a good example.

You also may add your own SIP handler with ArRobot::addPacketHandler
(p. 383). ArListPos (p. 246) keeps track of the order by which ArRobot
(p. 362) calls each handler. When run, your packet handler must test the SIP
type (ArRobotPacket::getID (p. 423)) and return true after decoding your
own packet type or return false, leaving the packet untouched for other handlers.

1.8.3 Command Packets

From the client side going to the robot server, your ARIA program may send
commands directly, or more commonly, use ARIA’s convenience methods (Mo-
tion Commands and others) as well as engage Actions which ARIA ultimately
converts into Direct Commands to the robot. See Commands and Ac-
tions (p. 12) for details. At the ARIA-robot interface, there is no difference
between Action- or other ARIA convenience-generated commands and Direct
Commands. However, upper-level processes aren’t necessarily aware of extra-
neous Direct or Motion Commands your client may send to the robot. Motion
Commands in particular need special attention when mixing with Actions. See
Commands and Actions (p. 12) below for more details.

Once connected, your ARIA client may send commands to the robot server
nearly at will, only limited by communication speeds and other temporal pro-
cesses and delays. Similarly, the server responds nearly immediately with a
requested SIP, such as a GRIPPERpac or IOpac which describe the P2 Gripper
or Input/Output port states, respectively.

However, general information from the robot server about its odometry, current
sonar readings, and the many other details which comprise its ”standard” SIP
automatically get sent to the ARIA client on a constant 100 or 50 millisecond
cycle. This requires some synchronization with ArRobot (p. 362).

1.8.4 Robot-ARIA Synchronization

ArRobot (p. 362) runs a processing cycle: a series of synchronized tasks, in-
cluding SIP handling, sensor interpretation, action handling and resolution,
state reflection, and user tasks, in that order. By default, ArRobot (p. 362)
performs these sequenced tasks each time it receives a standard SIP from the
robot. Its cycle is thereby triggered by the robot so that the tasks get the
freshest information from the robot upon which to act.

Of course, syncTasks runs without a connection with a robot, too. It has its
own default cycle time of 100 milliseconds which you may examine and re-
set with ArRobot::getCycleTime (p. 395) and ArRobot::setCycleTime
(p. 409), respectively. ArRobot (p. 362) waits up to twice that cycle time for

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

10 ARIA overview

a standard SIP before cycling automatically.

ArRobot (p. 362)’s synchronization task list is actually a tree, with five ma-
jor branches. If a particular task is not running, none of its children will be
called. Each task has an associated state value and a pointer to an ArTask-
State::State (p. 506) variable, which can be used to control the process, by
turning it on or off, or to see if it succeeded or failed. If the pointer is NULL,
then it is assumed that the task does not care about its state, and a local variable
will be used in the task structure to keep track of that tasks state.

For each branch, tasks get executed in descending order of priority.

ARIA provides convenient methods to add your own sensor-interpretation and
user tasks. Create an ARIA function pointer (Functors (p. 17)) and then
add your sensor interpreter (ArRobot::addSensorInterpTask (p. 384)) or
user task (ArRobot::addUserTask (p. 384)) to the list of syncTasks. These
tasks can be removed; use ArRobot::remSensorInterpTask (p. 406) or Ar-
Robot::remUserTask (p. 407) to remove sensor interpreter or user tasks, re-
spectively, by name or by functor.

The intrepid ARIA programmer can add or prune branches from the ArRobot
(p. 362) task list, as well as leaves on the branches. Do these things by getting
the root of the tree with ArRobot::getSyncTaskRoot (p. 399), and then
using the ArSyncTask (p. 499) class to do the desired manipulation.

You may disassociate ArRobot (p. 362)’s syncTask from firing when the stan-
dard SIP is received, through ArRobot::setCycleChained (p. 374). But in
doing so, you may degrade robot performance, as the robot’s cycle will simply
be run once every ArRobot::getCycleTime (p. 395) milliseconds.

1.8.5 State Reflection

State reflection in the ArRobot (p. 362) class is the way ARIA main-
tains and distributes a snapshot of the robot’s operating conditions and
values, as extracted from the latest standard SIP. ArRobot (p. 362)
methods for examining these values include ArRobot::getPose (p. 365),
ArRobot::getX (p. 365), ArRobot::getY (p. 365), ArRobot::getTh
(p. 365), ArRobot::getVel (p. 366), ArRobot::getRotVel (p. 366), Ar-
Robot::getBatteryVoltage (p. 394), ArRobot::isLeftMotorStalled
(p. 366), ArRobot::isRightMotorStalled (p. 366), ArRobot::getCompass
(p. 367), ArRobot::getAnalogPortSelected (p. 367), ArRobot::get-
Analog (p. 367), ArRobot::getDigIn (p. 367), ArRobot::getDigOut
(p. 367).

The standard SIP also contains low-level sonar readings, which are reflected
in ArRobot (p. 362) and examined with the methods: ArRobot::get-
NumSonar (p. 369), ArRobot::getSonarRange (p. 398), ArRobot::is-
SonarNew (p. 402), ArRobot::getSonarReading (p. 398), ArRobot::get-

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.9 Range Devices 11

ClosestSonarRange (p. 369), ArRobot::getClosestSonarNumber
(p. 369). This information is more useful when applied to a range device; see
Range Devices (p. 11) for details. And read the link pages for ArRobot
(p. 362) state reflection method details.

ARIA’s ArRobot (p. 362) also, by default, reflects in the State Reflec-
tion Robot-ARIA Synchronization (p. 9) syncTask the latest client Mo-
tion Command to the robot server at a rate set by ArRobot::setState-
ReflectionRefreshTime (p. 413). If no command is in effect, the Ar-
Commands::PULSE (p. 128) Direct Command gets sent. State reflection of
the motion command ensures that the client-server communication watchdog
on the robot won’t time out and disable the robot.

You may turn the motion-control state reflector off in the ArRobot::ArRobot
(p. 380) constructor (set doStateReflection parameter to false). This will cause
Motion Commands to be sent directly to the robot whenever they are called.
State Reflection will send a PULSE command to the robot at ArRobot::get-
StateReflectionRefreshTime (p. 399) milliseconds to prevent the watchdog
from timing out.

1.9 Range Devices

Range devices (ArRangeDevice (p. 319)) are abstractions of sensors for which
there are histories of relevant readings. Currently, there are two ARIA
RangeDevices: sonar (ArSonarDevice (p. 492)) and the SICK laser (ArSick
(p. 451)). All range devices are range-finding devices that periodically collect
2-D data at specific global coordinates, so the RangeDevice class should work
for any type of two-dimensional sensor.

Attach a RangeDevice to your robot with ArRobot::addRangeDevice
(p. 370) and remove it with ArRobot::remRangeDevice (p. 406). Query for
RangeDevices with ArRobot::findRangeDevice (p. 392). ArRobot::has-
RangeDevice (p. 400) will check to see if a particular range device (the given
instance) is attached to the robot. A list of range devices can be obtained with
ArRobot::getRangeDeviceList (p. 397).

Note that sonar are integrated with the robot controller and that their readings
automatically come included with the standard SIP and so are handled by the
standard ArRobot (p. 362) packet handler. Nonetheless, you must explicitly
add the sonar RangeDevice with your robot object to use the sonar readings
for control tasks. ARIA’s design gives the programmer ultimate control over
their code, even though that means making you do nearly everything explicitly.
Besides, not every program needs to track sonar data and there are some robots
don’t even have sonar.

Each RangeDevice has two sets of buffers (ArRangeBuffer (p. 312)): cur-
rent and cumulative, and each support two different reading formats: box

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

12 ARIA overview

and polar (ArRangeDevice::currentReadingPolar (p. 324), ArRange-
Device::currentReadingBox (p. 324), ArRangeDevice::cumulative-
ReadingPolar (p. 323), ArRangeDevice::cumulativeReadingBox
(p. 322)). The current buffer contains the most recent reading; the cumulative
buffer contains several readings over time, limited by ArRangeBuffer::setSize
(p. 318).

Useful for collision avoidance and other object detection tasks, apply the
checkRangeDevices methods to conveniently scan a related buffer on all
range devices attached to the robot for readings that fall within a specified
range, including ArRobot::checkRangeDevicesCurrentPolar (p. 389), Ar-
Robot::checkRangeDevicesCurrentBox (p. 388), ArRobot::checkRanges-
DevicesCumulativePolar, ArRobot::checkRangeDevicesCumulativeBox
(p. 387).

Note that each range device also has a threading mutex (ArRange-
Device::lockDevice (p. 325) and ArRangeDevice::unlockDevice (p. 326))
associated with it, so that sensors can be used in a thread-safe manner. For
example, if a laser device gets added that runs in its own thread, the check-
RangeDevice functions on the robot lock the device so it can poke at the laser
device without running into any issues, unlocking the device when it is done.
If you want to understand why this locking is good, see ARIA Threading
(p. 19).

1.10 Commands and Actions

Your ARIA client drives the robot and runs its various accessories through
Direct and Motion Commands, as well as through Actions.

1.10.1 Direct Commands

At the very lowest level, you may send commands directly to the robot server
through ArRobot (p. 362). Direct commands consist of a 1-byte command
number followed by none or more arguments, as defined by the robot’s operating
system, including P2OS and AmigOS. For example, the command number 4,
aka ENABLE, enables the robot’s motors if accompanied by the argument 1,
and disables the motors with the argument 0.

Direct commands to the robot come in five flavors, each defined by its command
argument type and length: Use ArRobot::com (p. 390) for commands that
have no argument, such as PULSE; ArRobot::comInt (p. 390) for a 2-byte
integer argument, signed or unsigned, such as the motors ENABLE command;
ArRobot::com2Bytes (p. 390) for when you want to define each of the two
bytes in the argument, such as the VEL2 command; and ArRobot::comStr
(p. 391) or ArRobot::comStrN (p. 391) for a null-terminated or defined-length

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.10 Commands and Actions 13

(N extra argument) string argument, respectively, such as the sonar POLLING
sequencing command.

The ArCommands (p. 128) class contains an enum with all the direct com-
mands; ArCommands::ENABLE (p. 128), for example. Although identical
in syntax and effect when supported, not all Direct Commands are included with
every ActivMedia robot. Fortunately, unrecognized or otherwise malformed
client commands are benign since they get ignored by the server. Please con-
sult your robot’s technical manual for details, such as the ”Pioneer 2 Operating
System” Chapter 6 in the Pioneer 2 Operations Manual, for client command
numbers and syntax.

1.10.2 Motion Commands

At a level just above ArRobot (p. 362)’s Direct Commands are the Motion
Commands. These are explicit movement commands. Some have identical
Direct Command analogues and act to immediately control the mobility of
your robot, either to set individual-wheel, or coordinated translational and
rotational velocities (ArRobot::setVel2 (p. 414), ArRobot::setVel (p. 413),
ArRobot::setRotVel (p. 412), respectively); change the robot’s absolute or
relative heading (ArRobot::setHeading (p. 412) or ArRobot::setDelta-
Heading (p. 410), respectively); move a prescribed distance (ArRobot::move
(p. 403)); or just stop (ArRobot::stop (p. 414)).

Examine the directMotionDemo.cpp example file to to see Motion Commands
at work.

Be aware that a Direct or a Motion Command may conflict with controls from
Actions or other upper-level processes and lead to unexpected consequences.
Use ArRobot::clearDirectMotion (p. 389) to cancel the overriding effect of
a Motion Command so that your Action is able to regain control the robot.
Or limit the time a Motion Command prevents other motion actions with Ar-
Robot::setDirectMotionPrecedenceTime (p. 411). Otherwise, the Motion
Command will prevent actions forever. Use ArRobot::getDirectMotion-
PrecedenceTime (p. 396) to see how long a Motion Command takes prece-
dence.

1.10.3 Actions

Instead of using Direct or Motion Commands, we prefer that your ARIA client
software use Actions to drive the robot. ArAction (p. 39) is the base class;
ArAction::fire (p. 42) is the only function that needs to be overloaded for an
action to work. ARIA includes a number of built-in actions; look for them in the
ARIA sources (the inheritance diagram on the ArAction (p. 39) page will show
you which they are as well). And see the actionExample program to discover
how to create your own actions.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

14 ARIA overview

Actions are added to robots with ArRobot::addAction (p. 381), including a
priority which determines its position in the action list. ArAction::setRobot
(p. 41) is called on an action when it is added to a robot. You can override this.
For example, this would be useful to add a connection callback, if there were
some calculations you wished to do upon connection to the robot.

Actions are evaluated by the resolverin descending order of priority (lowest
priority goes last) in each ArRobot (p. 362) syncTask cycle just prior to State
Reflection. The resolver goes through the actions to find a single end action-
Desired (ArActionDesired (p. 51)). Depending on its current state, an action
contributes particular actionDesired movement values and strengths to the final
action desired. After this final action desired has been calculated, it is stored
and later gets passed to the State Reflector and on to the robot as motion
commands.

At each stage when the resolver is evaluating an action it passes in the current
action desired of the higher priority actions, this is the currentDesired. For
example, a stall-recovery action probably should be programmed not to exert
its motion effects if it has been pre-empted by a stop action, so the stall-recovery
action can check and see if either the strength is used up or if there is a maximum
velocity, and if so it can reset its state. However, there is no need for an action
to pay attention to the currentDesired. The resolver could also simply pass a
ArActionDesired.reset() to the actions if it did not want the actions to know
about its state.

1.10.4 Action Desired

ArActionDesired (p. 51) is the meat of actions. Desired actions should be
reset (ArActionDesired::reset (p. 52)) before they are used or reused.

There are six desired action channels: velocity (ArActionDesired::setVel
(p. 58)), relative heading (ArActionDesired::setDeltaHeading (p. 55)), ab-
solute heading (ArActionDesired::setHeading (p. 56)), maximum forward
translational velocity (ArActionDesired::setMaxVel (p. 56)), maximum re-
verse translational velocity (ArActionDesired::setMaxNegVel (p. 56)), and
maximum rotational velocity (ArActionDesired::setMaxRotVel (p. 56)).

Your action gives each channel a strength of 0.0, the lowest, to 1.0, the highest.
Strengths are used by the resolver to compute the relative effect the action-
Desired channel setting will have on the current translational velocity and head-
ing of the robot, as well as the speed limits for those movements. (Note that
deltaHeading and heading are treated as the same channel for strength purposes,
and that these are simply alternate ways of accessing the same channel.)

The maximum velocity, maximum negative velocity, and maximum rotational
velocity channels simply impose speed limits and thereby indirectly control the
robot.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.10 Commands and Actions 15

For more advanced usage, desired actions can be merged (ArAction-
Desired::merge (p. 55)) and averaged (ArActionDesired::startAverage
(p. 58), ArActionDesired::addAverage (p. 55), ArActionDesired::end-
Average (p. 55)).

1.10.5 Resolvers

ArResolver (p. 332) is the base action-resolver class. ArPriorityResolver
(p. 304) is the default resolver. ArResolver::resolve (p. 332) is the
function that ArRobot (p. 362) calls with the action list (actually Ar-
Resolver::ActionMap (p. 332)) in order to combine and thereby resolve the
actionDesired movement controls into State Reflection motion commands to the
robot server.

There may only be one resolver per robot, which is set with ArRobot::set-
Resolver (p. 374). However, a resolver could be created to contain multiple
resolvers of its own. Also note that though a robot has particular resolver
bound to it, a resolver instance is not tied to any robot. Thus, if you had some
adapative resolver, you could set it to work for all robots.

The resolver works by setting each of the currentDesired channels to the con-
tributing actionDesired values in proportion to their respective strenghts and
priority, adjusting each movement channel’s currentDesired value until the in-
dividual strength becomes 1.0 or the list is exhausted. Same-priority actions
get averaged together (if they are competing) before being resolved with higher-
priority results.

The following table illustrates the steps and currentDesired setVel results when
the resolver combines four fictional actionDesired setVel channel values and their
relative strengths:

step # action priority Desired::setVel strength currentDesired strength

1 4 4 -400 0.25 -400 0.25

2 3 3 -100 1.0 (combine to 2&3)

3 2 3 200 0.50 (combine to 2&3)

4 2&3 3 0 0.75 -100 1.0

5 1 1 500 0.50 -100 1.0

Notice in the example that the same-priority actions 2 and 3 are combined
before being resolved with the higher priority action 4. Also notice that action
1 has no effect since the currentDesired channel strength reaches 1.0 before that
lowest-priority action gets considered by the resolver.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

16 ARIA overview

1.10.6 Movement and Limiting Actions

For programming convenience, ARIA has defined two useful types of actions:
Movement and Limiting. There are no classes for limiting or movement actions.

Built in movement actions have an ArAction (p. 39) prefix and act to set either
or both the translational velocity (setVel) and heading (setDeltaHeading and
setHeading) channels. Built in limiting actions are prefixed with ArAction-
Limiter and act to set one or more of the maximum translational and rotational
velocity channels.

1.10.7 Mixing Actions

Actions are most useful when mixed. The teleop program is a good example
of mixing limiting and movement actions. In the code, there are many limiting
actions, including Limiter, LimiterFar, and so on. And there are two movement
actions, joydriveAct and keydriveAct. The limiting actions have higher priority
than the movement ones, thereby making sure the way is safe before allowing
the robot to drive.

The example also illustrates fundamental, yet very powerful features of ARIA
actions and how they contribute to the overall behavior of the mobile robot.
Because they are individuals, contributing discretely to the movements of the
robot, actions are easily reusable. The limiting action in the teleop example that
prevents the robot from crashing into a wall when translating forward, can be
copied, as is, into another ARIA program and have the identical effect, except
that instead of driving the robot with a joystick, the new program’s lower-
priority movement action might use color-tracking to have the robot follow a
rolling ball. The ball-following action doesn’t needs to know anything about
the finer arts of safe navigation–the higher-priority limiting actions take care of
that.

Another ARIA example program called wander.cpp demonstrates how different
movement actions can be used and how they interact. The stall-recover action
in wander (ArActionStallRecover (p. 86)) influences the robot’s movements
only when the motors are stalled, disabling the lower priority actions by using up
all translational and rotational strength until the robot has extracted from the
stall. You should also examine ArActionStallRecover.cpp in the src/ directory
for actionDesired details on how the action changes its motion control influences
based on the stall state.

Also note how ArActionAvoidFront (p. 43) and ArActionConstant-
Velocity (p. 49) interact.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.11 Robot Callbacks 17

1.11 Robot Callbacks

There are a number of useful callbacks in the ARIA system, including Ar-
Robot::addConnectCB (p. 381), ArRobot::remConnectCB (p. 404), Ar-
Robot::addFailedConnectCB (p. 382), ArRobot::remFailedConnectCB
(p. 405), ArRobot::addDisconnectNormallyCB (p. 381), ArRobot::rem-
DisconnectNormallyCB (p. 405), ArRobot::addDisconnectOnErrorCB
(p. 382), ArRobot::remDisconnectOnErrorCB (p. 405), ArRobot::add-
RunExitCB (p. 383), ArRobot::remRunExitCB (p. 406). Read their indi-
vidual documentation pages for details.

Examples of callbacks are in the directMotionDemo and in joydriveThreaded.
Also, ArGripper (p. 212) uses a connectCB as a way to find out when to poll
the robot – a good use of callbacks. Just make sure that any modular code you
have removes callbacks if you use them.

1.12 Functors

Functor is short for function pointer. A Functor lets you call a function without
knowing the declaration of the function. Instead, the compiler and linker figure
out how to properly call the function.

Function pointers are fully supported by the C language. C++ treats function
pointers like C, but adds in the concept of member functions and the ’this’
pointer. C++ does not include the ’this’ pointer in the function pointer, which
can cause all sorts of problems in an object-oriented program. Hence, we created
functors. Functors contain both the function pointer and the pointer to the
object which contains the function, or what the function uses as its ’this’ pointer.

ARIA makes use of functors as callback functions. In most cases, you will only
need to instantiate callback functors and pass them off to various parts of ARIA.
To instantiate a functor, you first need to identify how many parameters the
function needs and if it returns a value. Most ARIA functions take a pointer to
ArFunctor (p. 154). This is the base class for all the different functors. Its for
a function that has no parameters and no return value.

But you can not create an ArFunctor (p. 154), because it is an abstract base
class. Rather, you need to instantiate one of these classes:

ArFunctorC (p. 181), ArFunctor1C (p. 159), ArFunctor2C (p. 165),
ArRetFunctorC (p. 359), ArRetFunctor1C (p. 337), ArRetFunctor2C
(p. 343)

The ’C’ in the name means that it’s an instance of the functor that knows
about the class of a member function. These are templatized classes so need to
be instantiated. For example:

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

18 ARIA overview

ExampleClass obj;

ArFunctorC (p. 181)<ExampleClass> functor(obj, &ExampleClass::aFunction);

ExampleClass is a class which contains a function called aFunction. Once the
functor is created in this fashion, it can now be passed off to an ARIA function
that wants a callback functor. And the function ExampleClass::aFunction will
be called when the functor is invoked.

The code that uses the callback functor only needs to know about
these templatized classes: ArFunctor (p. 154), ArFunctor1 (p. 157), Ar-
Functor2 (p. 163), ArRetFunctor (p. 334)<ReturnType>, ArRetFunctor1
(p. 335)<ReturnType>, and ArRetFunctor2 (p. 341)<ReturnType>. These
functors take 0-2 parameters and have no return or a return value.

To invoke the functors, simply call the invoke function on the functor. If it takes
parameters, call invoke with those parameters. If the functor has a return value,
call invokeR. The return value of the function will be passed back through the
invokeR function.

1.13 User Input

There are two different ways to get user input into Aria (p. 221), from a joystick
and from a keyboard. With a joystick is most useful for driving the robot around.
There is a class set up that interfaces to the OS for joystick controls, this is Ar-
JoyHandler (p. 230), the important functions are ArJoyHandler::getButtons,
ArJoyHandler::getAdjusted (p. 232), ArJoyHandler::setSpeeds (p. 230),
and ArJoyHandler::getDoubles (p. 233). With a keyboard is most useful for
setting and changing modes, and exiting the program, but it it can also be used
to drive the robot as well (with the arrow keys and the space bar typically), Ar-
KeyHandler (p. 236) is the class which deals with interfacing to the keyboard.
ArKeyhandler is directed towards capturing single key presses, not towards
reading in sets of text, you can use the normal OS functions to do this. The
important functions in ArKeyHandler (p. 236) is ArKeyHandler::addKey-
Handler (p. 238), which binds a specific key to a given functor, also look at the
enum ArKeyHandler::KEY (p. 237) for values to pass in for special keys. You
also need to attach a key handler to some robot with ArRobot::attachKey-
Handler (p. 386). ArActionJoydrive (p. 73) will use the joystick to drive the
robot around, while ArActionKeydrive (p. 77) will use the arrow keys and
spacebar to drive the robot around, both of these are employed in the teleop
example. The keyboard control is also a nice way to exit cleanly in Windows
since control C or just clicking on the program box won’t cleanly disconnect
from the robot, by default if you connect an ArKeyHandler (p. 236) to a
robot, escape will exit the program, however you can chage this behavior when
you attach the key handler to the robot if you wish.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.14 ARIA Threading 19

1.14 ARIA Threading

ARIA is highly multi-threaded. This section presents some of the critical con-
cepts behind writing threaded ARIA code.

ARIA provides a number of support classes to make it easier to write object-
oriented threaded code. They are: ArASyncTask (p. 119), ArCondition
(p. 131), ArMutex (p. 282), and ArThread (p. 513).

Thread-safe code mostly means proper coordination between threads when han-
dling the same data. You want to avoid the obvious problem of one or more
threads reading the data at the same time others write the data. To prevent this
problem from happening, the data needs to be protected with synchronization
objects.

1.14.1 Synchronous Objects

In ARIA, the synchronization objects are ArMutex (p. 282) and ArCondition
(p. 131). ArMutex (p. 282) is the most useful one. Mutex is short for mutual
exclusion. It guarantees that only one thread will use its data at a time. The
proper way to use a mutex is to attempt to lock it right before accessing its
shared data. If the mutex is not in use, ARIA then grants exclusive access by
the requesting thread. If the mutex is locked, the access request gets blocked,
and the thread must wait until the mutex gets free. When the thread that
has access to the mutex is finished with the data, it must unlock the mutex
and thereby make the data available to other threads. If it is not unlocked,
the program will become deadlocked and hang. See the mutex example in the
ARIA distribution for more details.

ArCondition (p. 131) is useful for delaying the execution of a thread. A thread
suspends execution while waiting on an ArCondition (p. 131) until another
thread wakes it up. For instance, use ArCondition (p. 131) while waiting for a
mutex to become free. Performance is better, too. ArCondition (p. 131) puts
the thread to sleep. The processing expensive alternative is to have the thread
continously check for a change in condition. ArCondition (p. 131) notifies only
those threads that are currently waiting on it at the time the condition changes.

See the ARIA condition example.

1.14.2 Asynchronous Tasks

Unlike the cyclical tasks in the syncTask list, asynchronous tasks run in their
own threads. And an ARIA ArASyncTask (p. 119) needs to have a thread
under its control for the full lifetime of the program.

To create an ansynchronous task, derive a class from ArASyncTask (p. 119)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

20 ARIA overview

and override the ArASyncTask::runThread() (p. 120) function. (The func-
tion automatically is called within the new thread, when the ArASync-
Task (p. 119) gets created.) To create and start the thread, call ArASync-
Task::create() (p. 119). When the ArASyncTask::runThread() (p. 120)
function exits, the thread will exit and be destroyed.

This class is mainly a convenience wrapper around ArThread (p. 513) so that
you can easily create your own object that encapsulates the concept of a thread.

1.15 ARIA Global Data

ARIA contains a list of all the ArRobot (p. 362) instances. Use the Aria::find-
Robot() (p. 223) to find a robot by name, or use Aria::getRobotList()
(p. 222) to get a list of the robots.

Use Aria::getDirectory() (p. 224) to find ARIA’s top-level path (C:\Aria
(p. 221) or /usr/local/Aria (p. 221), typically). This is useful, for instance, to
locate robot parameter files for individual operational details. Use Aria::set-
Directory() (p. 225) to change this path for the run of the program if you feel
the need to override what Aria (p. 221) has decided.

1.16 Piecemeal Use of ARIA

The most basic layer of ARIA is its deviceConnections, which handles low-level
communication with the robot server. On top of the connection layer, we have a
packet layer–ArBasePacket (p. 121) and ArRobotPacket (p. 423)–the basic
algorithms for constructing command packets and decoding server information
packets.

Above the packet layer is the packet handler classes, ArRobotPacketReceiver
(p. 425) and ArRobotPacketSender (p. 428), when send and receive packets
to and from the robot. Finally, on top of all these lowest layers is ArRobot
(p. 362), which is a gathering point for all things, but can be used in a quite
basic format without all of the bells and whistles. ArRobot (p. 362) has builtin
tasks, actions, state reflection and so forth, all of which can be disabled from
the constructor (ArRobot::ArRobot (p. 380)) and ignored or reimplemented.

Also note that if all you do is turn off state reflection, which only affects sending
ArRobot (p. 362)-mediated motion commands to the robot, not receiving SIPs
from the robot, none of the other activities which ArRobot (p. 362) engages on
its loop will take up hardly any time, so it probably isn’t worth building your
own set of tasks, but the power to do so is there for the intrepid.

One other thing worth noting is that you can call ArRobot::loopOnce (p. 403)
and it will run through its loop a single time and return. This is so that you can

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.17 Robot Parameter Files 21

use ARIA from your own control structure. If you are using loopOnce you may
also find it beneficial to call ArRobot::incCounter (p. 377), so that the loop
counter will be updated. You could also just call ArRobot::packetHandler
(p. 404), ArRobot::actionHandler (p. 380), or ArRobot::stateReflector
(p. 414) on your own, as these are the most important internal functions, though
if you make your own loop you should probably call ArRobot::incCounter
(p. 377) any way that you do it, as this is how sonar are known to be new or
not, and such.

We recommend that whatever you do you use the same type of strict thread-
ing/locking that ARIA observes.

1.17 Robot Parameter Files

Found in the Aria (p. 221)/params directory, generic, as well as individually
named robot parameter files contain default and name-specific robot information
that ARIA uses to characterize the robot and correctly interpret the server
information that a robot sends back to the client.

Every robot has a type and subtype, such as Pioneer and P2AT, as well as a
user-modifiable name, embedded in its FLASH parameters. These parameters
get sent to the ARIA client right after establishment of the client-server connec-
tion. ARIA retrieves parameter files in the following order– built in defaults,
subtype parameter file, and finally name parameter file–setting and resetting
global variables based on the contents of each file. Accordingly, subtype may
add or change the settings derived from the default, and a named parameter file
has the very last say over things.

ARIA has default generic type parameters, and generic subtype robot files,
such as p2at.p, p2de.p or p2pp.p for the Pioneer 2-AT, and Pioneer 2-DE and
Performance PeopleBot subtypes, respectively, in the parameters directory. You
may change their contents to better match your specific robot. Or, better, either
create a new one or copy the contents to a file which name matches your robot’s
FLASH parameter name, adding the ”.p” parameter file suffix. Then change and
add to the generic factors section those accessory or other operational details
that best define that specific robot.

For example, ARIA uses RobotRadius to determine the robot’s turn limits in
most of the obstacle avoidance routines. The default for the P2AT robot doesn’t
account for bumper accessories. Accordingly, you might create a new parameter
file that redefines RobotRadius for that specific robot.

ARIA uses the values in the conversion factors section of a parameter file to
transform the robot-dependent server information data into normal dimensions
and rates. For example, the DistConvFactor converts the robot’s position data,
measured in encoder ticks, into millimeters.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

22 ARIA overview

ARIA consults the accessories section of a robot’s parameter file to determine
what accessories a robot might have that cannot be told by other means. For
example, the P2 bumper values appear in the standard SIP stall values, but if a
bump ring isn’t connected, these values float and vacillate between on and off.
An accessory definition in the parameter file clues ARIA to use or not use the
bumper values.

Finally, the sonar section of the parameter file contains information about the
sonar number and geometry so that ARIA can relate sonar readings with posi-
tion relative to the center of the robot.

1.17.1 How the parameter file works

The parameter file is very much like a Windows INI file in format. It contains
sections and keyword/data pairs. Comments start with a semi-colon. A section
identifier is a bracketed keyword, such as:

[ConvFactors]

Keywords and data are separated by one or more spaces on a single line, and
may include several defining data values. Each keyword has its own behavior
with how it parses the data. For example:

KeyWord data1 data2 data3 ...

Case matters for both section identifiers and keyword names. Some parameters
can have multiple instances in the file. SonarUnit is a good example of this.
The multiple instances of the parameter need to be surrounded by a ’@start’
and ’@end’ block. For example:

@start

SonarUnit 0 73 105 90

SonarUnit 1 130 78 41

@end

See ArPreferences.h for additional details.

1.18 Utility Classes

Some of the utility classes are ArMath (p. 254), ArUtil (p. 523), ArTime
(p. 517), ArPose (p. 299), and ArSectors (p. 438).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.19 Sockets 23

1.19 Sockets

The ArSocket (p. 485) class is a wrapper around the socket network commu-
nication layer of your operating system. ARIA mostly uses ArSocket (p. 485)
to open a server port and to connect to another server port.

To connect to a port, simply construct a socket containing the hostname or IP
address of the host, a port number, and the ARIA socket type (TCP or UDP).
For example:

ArSocket (p. 485) sock("host.name.com", 4040, ArSocket::TCP);

Or call the ArSocket::connect() (p. 485) function, such as:

ArSocket (p. 485) sock;

sock.connect("host.name.com", 4040, ArSocket::TCP);

To open a server port, simple construct a socket:

ArSocket (p. 485) sock(4040, true, ArSocket::TCP);

Or call:

ArSocket::open(4040, ArSocket::TCP);

1.19.1 Emacs

Here is the configuration specification the developers at ActivMedia Robotics
use in their .emacs files, in case you want to modify the code using emacs and
not deal with differences in indentation and such.

(setq c-default-style ’((other . "user")))

(c-set-offset ’substatement-open 0)

(c-set-offset ’defun-block-intro 2)

(c-set-offset ’statement-block-intro 2)

(c-set-offset ’substatement 2)

(c-set-offset ’topmost-intro -2)

(c-set-offset ’arglist-intro ’++)

(c-set-offset ’statement-case-intro ’*)

(c-set-offset ’member-init-intro 2)

(c-set-offset ’inline-open 0)

(c-set-offset ’brace-list-intro 2)

(c-set-offset ’statement-cont 0)

(defvar c-mode-hook ’c++-mode)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

24 ARIA overview

1.20 Non-everyday use of C++

1.20.1 Standard Template Library

ARIA makes heavy use of the C++ standard template library. So you should
understand the STL in order to get the best use from some of the more
advanced parts of ARIA. A reference many developers have found useful is
http://www.sgi.com/tech/stl/, this is documentation to SGI’s implementa-
tion, but other than the SGI specific templates which are explicitly stated as
being SGI only, the documentation is quite helpful.

1.20.2 Default Arguments

Default arguments work like the following, in the function delcaration a param-
eter is specified, and given a default value at the same time. If the function is
then used the parameters which have been given a value do not need to be given
values when the function is used.

For example, after defining foo, it can be used in two differnt manners:

void foo(int number = 3);

// ...later

foo();

// or

foo(int);

This behavior is quite useful for having defaults that most people will not need
to change, but allowing people to change them if they desire.

Also note that the function definition must not have the assignment in it, only
the declaration, otherwise Windows compilers will not work and will report a
not entirely useful error message.

1.20.3 Constructor Chaining

Constructor chaining is quite simple though little used. Each contructor can
give arguments to the constructors of the member variables it contains and to
the constructors which it inherits. For example if you have:

class BaseClass

{
public:

BaseClass(int someNumber);

};

and

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

1.20 Non-everyday use of C++ 25

class SubClass : public BaseClass

{
public:

SubClass(void);

int anotherNumber;

};

When you write your constructor for subClass. you can intialize both baseClass
and anotherNumber:

SubClass::SubClass(void) : BaseClass(3), anotherNumber(37)

{
// ...

}

Note how the constructors to be initialized must follow a colon (:) after the
constructor, and be separated by commas? For member variables they must also
be initialized in the order they are in the class. Note that intializing integers
is not all that unique or useful, but using this to initialize callback Functors
(p. 17) is quite useful.

Constructor chaining is used in many many places by ARIA, thus it must be
understood in order to understand ARIA, but the above is all that really needs
to be known.

1.20.4 Chars and Strings, Win workaround

During development problems were encountered with windows if std::strings
were passed into a dll. Thus for all input to ARIA const char ∗s are used,
but for all internal storage and all reporting std::strings are passed back out of
ARIA.

1.20.5 AREXPORT

Because of the Windows set up for using DLLs, is a macro used to take care of the
requirements for DLLs. Largely users do not need to worry about AREXPORTs,
but only functions which have AREXPORTs or inline functions are usable with
DLLs in windows (all of the functions which are documented are usable).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

26 ARIA overview

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 2

Aria Hierarchical Index

2.1 Aria Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

ArAction . 39
ArActionAvoidFront . 43
ArActionAvoidSide . 45
ArActionBumpers . 47
ArActionConstantVelocity . 49
ArActionGoto . 61
ArActionInput . 71
ArActionJoydrive . 73
ArActionKeydrive . 77
ArActionLimiterBackwards . 80
ArActionLimiterForwards . 82
ArActionLimiterTableSensor . 84
ArActionStallRecover . 86
ArActionStop . 88
ArActionTurn . 90

ArActionDesired . 51
ArActionDesiredChannel . 60
ArActionGroup . 63

ArActionGroupInput . 66
ArActionGroupStop . 67
ArActionGroupTeleop . 68
ArActionGroupUnguardedTeleop 69
ArActionGroupWander . 70

ArACTS 1 2 . 92
ArACTSBlob . 97

28 Aria Hierarchical Index

ArAMPTUCommands . 102
ArAnalogGyro . 106
ArArg . 109
ArArgumentBuilder . 114
ArArgumentParser . 116
ArBasePacket . 121

ArAMPTUPacket . 104
ArDPPTUPacket . 151
ArRobotPacket . 423
ArSickPacket . 471
ArSonyPacket . 494
ArVCC4Packet . 542

ArCommands . 128
ArCondition . 131
ArConfig . 133

ArRobotParams . 432
ArRobotAmigo
ArRobotGeneric
ArRobotMapper
ArRobotP2AT
ArRobotP2AT8
ArRobotP2AT8Plus
ArRobotP2CE
ArRobotP2D8
ArRobotP2D8Plus
ArRobotP2DF
ArRobotP2DX
ArRobotP2DXe
ArRobotP2IT
ArRobotP2PB
ArRobotP2PP
ArRobotP3AT
ArRobotP3DX
ArRobotPerfPB
ArRobotPerfPBPlus
ArRobotPion1M
ArRobotPion1X
ArRobotPionAT
ArRobotPowerBot
ArRobotPsos1M
ArRobotPsos1X
ArRobotPsos43M

ArConfigGroup . 136
ArDeviceConnection . 137

ArLogFileConnection . 249

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

2.1 Aria Class Hierarchy 29

ArSerialConnection . 444
ArTcpConnection . 507

ArDPPTUCommands . 149
ArFileParser . 152
ArFunctor . 154

ArFunctor1< P1 > . 157
ArFunctor1C< T, P1 > . 159
ArFunctor2< P1, P2 > . 163

ArFunctor2C< T, P1, P2 > 165
ArFunctor3< P1, P2, P3 > 170

ArFunctor3C< T, P1, P2, P3 > 173
ArGlobalFunctor3< P1, P2, P3 > 193

ArGlobalFunctor2< P1, P2 > 189
ArGlobalFunctor1< P1 > . 186

ArFunctorC< T > . 181
ArGlobalFunctor . 184
ArRetFunctor< Ret > . 334

ArGlobalRetFunctor< Ret > 198
ArRetFunctor1< Ret, P1 > . 335

ArGlobalRetFunctor1< Ret, P1 > 200
ArRetFunctor1C< Ret, T, P1 > 337

ArRetFunctor2< Ret, P1, P2 > 341
ArGlobalRetFunctor2< Ret, P1, P2 > 203
ArRetFunctor2C< Ret, T, P1, P2 > 343

ArRetFunctor3< Ret, P1, P2, P3 > 349
ArGlobalRetFunctor3< Ret, P1, P2, P3 > 207
ArRetFunctor3C< Ret, T, P1, P2, P3 > 352

ArRetFunctorC< Ret, T > . 359
ArGripper . 212
ArGripperCommands . 219
Aria . 221
ArInterpolation . 226
ArJoyHandler . 230
ArKeyHandler . 236
ArLine . 240
ArLineSegment . 242
ArListPos . 246
ArLog . 247
ArMath . 254
ArMode . 260

ArModeBumps
ArModeCamera . 264
ArModeGripper . 266
ArModeIO

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

30 Aria Hierarchical Index

ArModeLaser
ArModePosition
ArModeSonar . 268
ArModeTeleop . 270
ArModeUnguardedTeleop . 272
ArModeWander . 274

ArModule . 276
ArModuleLoader . 279
ArMutex . 282
ArNetServer . 284
ArP2Arm . 287
ArPose . 299

ArPoseWithTime . 303
ArPTZ . 305

ArAMPTU . 99
ArDPPTU . 143
ArSonyPTZ . 496
ArVCC4 . 534

ArRangeBuffer . 312
ArRangeDevice . 319

ArIrrfDevice . 228
ArRangeDeviceThreaded . 327

ArSick . 451
ArSonarDevice . 492

ArResolver . 332
ArPriorityResolver . 304

ArRobot . 362
ArRobotConfigPacketReader . 418
ArRobotPacketReceiver . 425
ArRobotPacketSender . 428
ArRunningAverage . 437
ArSectors . 438
ArSensorReading . 439
ArSickLogger . 468
ArSickPacketReceiver . 474
ArSimpleConnector . 483
ArSocket . 485
ArSyncTask . 499
ArTaskState . 506
ArThread . 513

ArASyncTask . 119
ArFunctorASyncTask . 180
ArRecurrentTask . 330
ArSignalHandler . 477

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

2.1 Aria Class Hierarchy 31

ArSyncLoop
ArTime . 517
ArTransform . 519
ArTypes . 522
ArUtil . 523
ArVCC4Commands . 540
P2ArmJoint . 543

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

32 Aria Hierarchical Index

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 3

Aria Compound Index

3.1 Aria Compound List

Here are the classes, structs, unions and interfaces with brief descriptions:

ArAction (Action class, what typically makes the robot move) 39
ArActionAvoidFront (This action does obstacle avoidance, control-

ling both trans and rot) . 43
ArActionAvoidSide (Action to avoid impacts by firening into walls

at a shallow angle) . 45
ArActionBumpers (Action to deal with if the bumpers trigger) . . 47
ArActionConstantVelocity (Action for going straight at a constant

velocity) . 49
ArActionDesired (Class used to say what movement is desired) . . 51
ArActionDesiredChannel (Class used by ArActionDesired

(p. 51) for each channel, internal) 60
ArActionGoto (This action goes to a given ArPose (p. 299) very

naively) . 61
ArActionGroup (Class for groups of actions to accomplish one thing) 63
ArActionGroupInput (Input to drive the robot) 66
ArActionGroupStop (Stop the robot) 67
ArActionGroupTeleop (Teleop the robot) 68
ArActionGroupUnguardedTeleop (Teleop the robot in an un-

guarded and unsafe manner) 69
ArActionGroupWander (Has the robot wander) 70
ArActionInput (Action for stopping the robot) 71
ArActionJoydrive (This action will use the joystick for input to drive

the robot) . 73
ArActionKeydrive (This action will use the keyboard arrow keys for

input to drive the robot) . 77

34 Aria Compound Index

ArActionLimiterBackwards (Action to limit the backwards motion
of the robot) . 80

ArActionLimiterForwards (Action to limit the forwards motion of
the robot) . 82

ArActionLimiterTableSensor (Action to limit speed based on
whether there the table-sensors see anything) 84

ArActionStallRecover (Action to recover from a stall) 86
ArActionStop (Action for stopping the robot) 88
ArActionTurn (Action to turn when the behaviors with more priority

have limited the speed) . 90
ArACTS 1 2 (Driver for ACTS) . 92
ArACTSBlob (A class for the acts blob) 97
ArAMPTU (Driver for the AMPUT) 99
ArAMPTUCommands (A class with the commands for the AMPTU)102
ArAMPTUPacket (A class for for making commands to send to the

AMPTU) . 104
ArAnalogGyro (Gyro plugin for the analog devices gyro) 106
ArArg (Argument class, mostly for actions, could be used for other

things) . 109
ArArgumentBuilder (This class is to build arguments for things

that require argc and argv) 114
ArArgumentParser (Class for parsing arguments) 116
ArASyncTask (Asynchronous task (runs in its own thread)) 119
ArBasePacket (Base packet class) 121
ArCommands (A class with an enum of the commands that can be

sent to the robot) . 128
ArCondition (Threading condition wrapper class) 131
ArConfig (Classes dealing with config files can inherit from this one) 133
ArConfigGroup (Container for holding a group of ArConfigs) 136
ArDeviceConnection (Base class for device connections) 137
ArDPPTU (Driver for the DPPTU) 143
ArDPPTUCommands (A class with the commands for the DPPTU) 149
ArDPPTUPacket (A class for for making commands to send to the

DPPTU) . 151
ArFileParser (Class for parsing files more easily) 152
ArFunctor (Base class for functors) 154
ArFunctor1< P1 > (Base class for functors with 1 parameter) . . . 157
ArFunctor1C< T, P1 > (Functor for a member function with 1

parameter) . 159
ArFunctor2< P1, P2 > (Base class for functors with 2 parameters) 163
ArFunctor2C< T, P1, P2 > (Functor for a member function with

2 parameters) . 165
ArFunctor3< P1, P2, P3 > (Base class for functors with 3 param-

eters) . 170
ArFunctor3C< T, P1, P2, P3 > (Functor for a member function

with 3 parameters) . 173

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

3.1 Aria Compound List 35

ArFunctorASyncTask (This is like ArASyncTask (p. 119), but in-
stead of runThread it uses a functor to run) 180

ArFunctorC< T > (Functor for a member function) 181
ArGlobalFunctor (Functor for a global function with no parameters) 184
ArGlobalFunctor1< P1 > (Functor for a global function with 1

parameter) . 186
ArGlobalFunctor2< P1, P2 > (Functor for a global function with

2 parameters) . 189
ArGlobalFunctor3< P1, P2, P3 > (Functor for a global function

with 3 parameters) . 193
ArGlobalRetFunctor< Ret > (Functor for a global function with

return value) . 198
ArGlobalRetFunctor1< Ret, P1 > (Functor for a global function

with 1 parameter and return value) 200
ArGlobalRetFunctor2< Ret, P1, P2 > (Functor for a global func-

tion with 2 parameters and return value) 203
ArGlobalRetFunctor3< Ret, P1, P2, P3 > (Functor for a global

function with 2 parameters and return value) 207
ArGripper (A class of convenience functions for using the gripper) . 212
ArGripperCommands (A class with an enum of the commands for

the gripper) . 219
Aria (This class performs global initialization and deinitialization) . . 221
ArInterpolation . 226
ArIrrfDevice (A class for connecting to a PB-9 and managing the

resulting data) . 228
ArJoyHandler (Interfaces to a joystick) 230
ArKeyHandler (This class will read input from the keyboard) . . . 236
ArLine (This is the class for a line to do some geometric manipulation)240
ArLineSegment (This is the class for a line segment to do some

geometric manipulation) . 242
ArListPos (Has enum for position in list) 246
ArLog (Logging utility class) . 247
ArLogFileConnection (For connecting through a log file) 249
ArMath (This class has static members to do common math operations)254
ArMode (A class for different modes, mostly as related to keyboard

input) . 260
ArModeCamera (Mode for controlling the camera) 264
ArModeGripper (Mode for controlling the gripper) 266
ArModeSonar (Mode for displaying the sonar) 268
ArModeTeleop (Mode for teleoping the robot with joystick + key-

board) . 270
ArModeUnguardedTeleop (Mode for teleoping the robot with joy-

stick + keyboard) . 272
ArModeWander (Mode for wandering around) 274
ArModule (Dynamicly loaded module base class, read warning in more)276
ArModuleLoader (Dynamic ArModule (p. 276) loader) 279

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

36 Aria Compound Index

ArMutex (Mutex wrapper class) . 282
ArNetServer (Class for running a simple net server to send/recv

commands via text) . 284
ArP2Arm (Arm Control class) . 287
ArPose (The class which represents a position) 299
ArPoseWithTime (A subclass of pose that also has the time the

pose was taken) . 303
ArPriorityResolver ((Default resolver), takes the action list and uses

the priority to resolve) . 304
ArPTZ (Base class which handles the PTZ cameras) 305
ArRangeBuffer (This class is a buffer that holds ranging information)312
ArRangeDevice (The class for all devices which return range info

(laser, sonar)) . 319
ArRangeDeviceThreaded (A range device which can run in its own

thread) . 327
ArRecurrentTask (Recurrent task (runs in its own thread)) 330
ArResolver (Resolves a list of actions and returns what to do) . . . 332
ArRetFunctor< Ret > (Base class for functors with a return value) 334
ArRetFunctor1< Ret, P1 > (Base class for functors with a return

value with 1 parameter) . 335
ArRetFunctor1C< Ret, T, P1 > (Functor for a member function

with return value and 1 parameter) 337
ArRetFunctor2< Ret, P1, P2 > (Base class for functors with a

return value with 2 parameters) 341
ArRetFunctor2C< Ret, T, P1, P2 > (Functor for a member func-

tion with return value and 2 parameters) 343
ArRetFunctor3< Ret, P1, P2, P3 > (Base class for functors with

a return value with 3 parameters) 349
ArRetFunctor3C< Ret, T, P1, P2, P3 > (Functor for a member

function with return value and 3 parameters) 352
ArRetFunctorC< Ret, T > (Functor for a member function with

return value) . 359
ArRobot (THE important class) . 362
ArRobotConfigPacketReader (This class will read a config packet

from the robot) . 418
ArRobotPacket (Represents the packets sent to the robot as well as

those received from it) . 423
ArRobotPacketReceiver (Given a device connection it receives

packets from the robot through it) 425
ArRobotPacketSender (Given a device connection this sends com-

mands through it to the robot) 428
ArRobotParams (Contains the robot parameters, according to the

parameter file) . 432
ArRunningAverage (This is a class for computing a running average

of a number of elements) . 437

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

3.1 Aria Compound List 37

ArSectors (A class for keeping track of if a complete revolution has
been attained) . 438

ArSensorReading (A class to hold a sensor reading, should be one
instance per sensor) . 439

ArSerialConnection (For connecting to devices through a serial port)444
ArSick (The sick driver) . 451
ArSickLogger (This class can be used to create log files for the laser

mapper) . 468
ArSickPacket (Represents the packets sent to the sick as well as those

received from it) . 471
ArSickPacketReceiver (Given a device connection it receives pack-

ets from the sick through it) 474
ArSignalHandler (Signal handling class) 477
ArSimpleConnector (This class simplifies connecting to the robot

and/or laser) . 483
ArSocket (Socket communication wrapper) 485
ArSonarDevice (A class for keeping track of sonar) 492
ArSonyPacket (A class for for making commands to send to the sony)494
ArSonyPTZ (A class to use the sony pan tilt zoom unit) 496
ArSyncTask (Class used internally to manage the functions that are

called every cycle) . 499
ArTaskState (Class with the different states a task can be in) 506
ArTcpConnection (For connectiong to a device through a socket) . 507
ArThread (POSIX/WIN32 thread wrapper class) 513
ArTime (A class for time readings) 517
ArTransform (A class to handle transforms between different coor-

dinates) . 519
ArTypes (Contains platform independent sized variable types) 522
ArUtil (This class has utility functions) 523
ArVCC4 (Driver for the VCC4) . 534
ArVCC4Commands (A class with the commands for the VCC4) . . 540
ArVCC4Packet (A class for for making commands to send to the

VCC4) . 542
P2ArmJoint (P2 Arm joint info) . 543

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

38 Aria Compound Index

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

Chapter 4

Aria Class Documentation

4.1 ArAction Class Reference

Action class, what typically makes the robot move.

#include <ArAction.h>

Inheritance diagram for ArAction::

40 Aria Class Documentation

ArAction

ArActionAvoidFront

ArActionAvoidSide

ArActionBumpers

ArActionConstantVelocity

ArActionGoto

ArActionInput

ArActionJoydrive

ArActionKeydrive

ArActionLimiterBackwards

ArActionLimiterForwards

ArActionLimiterTableSensor

ArActionStallRecover

ArActionStop

ArActionTurn

Public Methods

• ArAction (const char ∗name, const char ∗description=””)
Constructor.

• virtual ∼ArAction ()
Desructor.

• virtual bool isActive (void) const
Finds out whether the action is active or not.

• virtual void activate (void)
Activate the action.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.1 ArAction Class Reference 41

• virtual void deactivate (void)

Deactivate the action.

• virtual ArActionDesired ∗ fire (ArActionDesired current-
Desired)=0

Fires the action, returning what the action wants to do.

• virtual void setRobot (ArRobot ∗robot)

Sets the robot this action is driving.

• virtual int getNumArgs (void) const

Find the number of arguments this action takes.

• virtual const ArArg ∗ getArg (int number) const

Gets the numbered argument.

• virtual ArArg ∗ getArg (int number)

Gets the numbered argument.

• virtual const char ∗ getName (void) const

Gets the name of the action.

• virtual const char ∗ getDescription (void) const

Gets the long description of the action.

• virtual ArActionDesired ∗ getDesired (void)

Gets what this action wants to do (for display purposes).

• virtual void log (bool verbose=true) const

ArLog::log (p. 248) s the actions stats.

Protected Methods

• void setNextArgument (ArArg const &arg)

Sets the argument type for the next argument (only use in constructor).

4.1.1 Detailed Description

Action class, what typically makes the robot move.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

42 Aria Class Documentation

4.1.2 Member Function Documentation

4.1.2.1 virtual ArActionDesired∗ ArAction::fire (ArActionDesired
currentDesired) [pure virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented in ArActionAvoidFront (p. 44), ArActionAvoidSide
(p. 46), ArActionBumpers (p. 48), ArActionConstantVelocity (p. 50),
ArActionGoto (p. 62), ArActionInput (p. 72), ArActionJoydrive (p. 75),
ArActionKeydrive (p. 78), ArActionLimiterBackwards (p. 81), Ar-
ActionLimiterForwards (p. 83), ArActionLimiterTableSensor (p. 85),
ArActionStallRecover (p. 87), ArActionStop (p. 89), and ArActionTurn
(p. 91).

The documentation for this class was generated from the following files:

• ArAction.h
• ArAction.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.2 ArActionAvoidFront Class Reference 43

4.2 ArActionAvoidFront Class Reference

This action does obstacle avoidance, controlling both trans and rot.

#include <ArActionAvoidFront.h>

Inheritance diagram for ArActionAvoidFront::

ArActionAvoidFront

ArAction

Public Methods

• ArActionAvoidFront (const char ∗name=”avoid front obstacles”,
double obstacleDistance=450, double avoidVelocity=200, double turn-
Amount=15, bool useTableIRIfAvail=true)

Constructor.

• virtual ∼ArActionAvoidFront ()
Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)
Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)
Gets what this action wants to do (for display purposes).

4.2.1 Detailed Description

This action does obstacle avoidance, controlling both trans and rot.

This action uses whatever available range device have been added to the robot
to avoid obstacles. See the ArActionAvoidFront constructor documentation to
see the parameters it takes.

Also note that this action does something most others don’t, which is to check
for a specific piece of hardware. This is the tableSensingIR. If this is set up in
the parameters for the robot, it will use DigIn0 and DigIn1, where the table-
SensingIRs are connected. Note that if you make useTableIRIfAvail false in the
constructor it’ll ignore these. Whether the action thinks the robot has them or
not depends on the value of tableSensingIR in the parameter file for that robot.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

44 Aria Class Documentation

4.2.2 Constructor & Destructor Documentation

4.2.2.1 ArActionAvoidFront::ArActionAvoidFront (const char ∗
name = ”avoid front obstacles”, double obstacleDistance =
450, double avoidVelocity = 200, double turnAmount = 15,
bool useTableIRIfAvail = true)

Constructor.

Parameters:
name the name of the action

obstacleDistance distance at which to turn. (mm)

avoidVelocity Speed at which to go while avoiding an obstacle. (mm/sec)

turnAmount Degrees to turn relative to current heading while avoiding
obstacle (deg)

useTableIRIfAvail Whether to use the table sensing IR if they are avail-
able

4.2.3 Member Function Documentation

4.2.3.1 ArActionDesired ∗ ArActionAvoidFront::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 42).

The documentation for this class was generated from the following files:

• ArActionAvoidFront.h
• ArActionAvoidFront.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.3 ArActionAvoidSide Class Reference 45

4.3 ArActionAvoidSide Class Reference

Action to avoid impacts by firening into walls at a shallow angle.

#include <ArActionAvoidSide.h>

Inheritance diagram for ArActionAvoidSide::

ArActionAvoidSide

ArAction

Public Methods

• ArActionAvoidSide (const char ∗name=”Avoid side”, double obstacle-
Distance=300, double turnAmount=5)

Constructor.

• virtual ∼ArActionAvoidSide ()
Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)
Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)
Gets what this action wants to do (for display purposes).

4.3.1 Detailed Description

Action to avoid impacts by firening into walls at a shallow angle.

This action watches the sensors to see if it is close to firening into a wall at a
shallow enough angle that other avoidance may not avoid.

4.3.2 Constructor & Destructor Documentation

4.3.2.1 ArActionAvoidSide::ArActionAvoidSide (const char ∗
name = ”Avoid side”, double obstacleDistance = 300,
double turnAmount = 5)

Constructor.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

46 Aria Class Documentation

Parameters:
name name of the action

obstacleDistance distance at which to start avoiding (mm)

turnAmount degrees at which to turn (deg)

4.3.3 Member Function Documentation

4.3.3.1 ArActionDesired ∗ ArActionAvoidSide::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 42).

The documentation for this class was generated from the following files:

• ArActionAvoidSide.h
• ArActionAvoidSide.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.4 ArActionBumpers Class Reference 47

4.4 ArActionBumpers Class Reference

Action to deal with if the bumpers trigger.

#include <ArActionBumpers.h>

Inheritance diagram for ArActionBumpers::

ArActionBumpers

ArAction

Public Methods

• ArActionBumpers (const char ∗name=”bumpers”, double back-
OffSpeed=100, int backOffTime=2500, int turnTime=500, bool set-
Maximums=false)

Constructor.

• virtual ∼ArActionBumpers ()

Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)

Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)

Gets what this action wants to do (for display purposes).

4.4.1 Detailed Description

Action to deal with if the bumpers trigger.

This class basically responds to the bumpers the robot has, what the activity
things the robot has is decided by the param file. If the robot is going forwards
and bumps into something with the front bumpers, it will back up and turn. If
the robot is going backwards and bumps into something with the rear bumpers
then the robot will move forward and turn.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

48 Aria Class Documentation

4.4.2 Constructor & Destructor Documentation

4.4.2.1 ArActionBumpers::ArActionBumpers (const char ∗ name
= ”bumpers”, double backOffSpeed = 100, int backOffTime
= 2500, int turnTime = 500, bool setMaximums = false)

Constructor.

Parameters:
name name of the action

backOffSpeed speed at which to back away (mm/sec)

backOffTime number of msec to back up for (msec)

turnTime number of msec to alow for turn (msec)

4.4.3 Member Function Documentation

4.4.3.1 ArActionDesired ∗ ArActionBumpers::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 42).

The documentation for this class was generated from the following files:

• ArActionBumpers.h
• ArActionBumpers.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.5 ArActionConstantVelocity Class Reference 49

4.5 ArActionConstantVelocity Class Reference

Action for going straight at a constant velocity.

#include <ArActionConstantVelocity.h>

Inheritance diagram for ArActionConstantVelocity::

ArActionConstantVelocity

ArAction

Public Methods

• ArActionConstantVelocity (const char ∗name=”Constant Velocity”,
double velocity=400)

Constructor.

• virtual ∼ArActionConstantVelocity ()
Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)
Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)
Gets what this action wants to do (for display purposes).

4.5.1 Detailed Description

Action for going straight at a constant velocity.

This action simply goes straight at a constant velocity.

4.5.2 Constructor & Destructor Documentation

4.5.2.1 ArActionConstantVelocity::ArActionConstantVelocity
(const char ∗ name = ”Constant Velocity”, double velocity
= 400)

Constructor.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

50 Aria Class Documentation

Parameters:
name name of the action

velocity velocity to travel at (mm/sec)

4.5.3 Member Function Documentation

4.5.3.1 ArActionDesired ∗ ArActionConstantVelocity::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 42).

The documentation for this class was generated from the following files:

• ArActionConstantVelocity.h
• ArActionConstantVelocity.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.6 ArActionDesired Class Reference 51

4.6 ArActionDesired Class Reference

Class used to say what movement is desired.

#include <ArActionDesired.h>

Public Methods

• ArActionDesired ()
Constructor.

• virtual ∼ArActionDesired ()
Destructor.

• virtual void setVel (double vel, double strength=MAX STRENGTH)
Sets the velocity (mm/sec) and strength.

• virtual void setDeltaHeading (double deltaHeading, double
strength=MAX STRENGTH)

Sets the delta heading (deg) and strength.

• virtual void setHeading (double heading, double strength=MAX -
STRENGTH)

Sets the absolute heading (deg).

• virtual void setRotVel (double rotVel, double strength=MAX -
STRENGTH)

Sets the rotational velocity.

• virtual void setMaxVel (double maxVel, double strength=MAX -
STRENGTH)

Sets the maximum velocity (+mm/sec) and strength.

• virtual void setMaxNegVel (double maxVel, double strength=MAX -
STRENGTH)

Sets the maximum velocity for going backwards (-mm/sec) and strength.

• virtual void setTransAccel (double transAccel, double strength=MAX -
STRENGTH)

Sets the translation acceleration (deg/sec/sec) and strength.

• virtual void setTransDecel (double transDecel, double strength=MAX -
STRENGTH)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

52 Aria Class Documentation

Sets the translation deceleration (deg/sec/sec) and strength.

• virtual void setMaxRotVel (double maxVel, double strength=MAX -
STRENGTH)

Sets the maximum rotational velocity (deg/sec) and strength.

• virtual void setRotAccel (double rotAccel, double strength=MAX -
STRENGTH)

Sets the rotational acceleration (deg/sec/sec) and strength.

• virtual void setRotDecel (double rotDecel, double strength=MAX -
STRENGTH)

Sets the rotational deceleration (deg/sec/sec) and strength.

• virtual void reset (void)
Resets the strengths to 0.

• virtual double getVel (void)
Gets the translational velocity desired (mm/sec).

• virtual double getVelStrength (void)
Gets the strength of the translational velocity desired.

• virtual double getHeading (void)
Gets the heading desired (deg).

• virtual double getHeadingStrength (void)
Gets the strength of the heading desired.

• virtual double getDeltaHeading (void)
Gets the delta heading desired (deg).

• virtual double getDeltaHeadingStrength (void)
Gets the strength of the delta heading desired.

• virtual double getRotVelStrength (void)
Gets the rot vel des (deg/sec).

• virtual double getRotVel (void)
Gets the rot vel that was set.

• virtual double getMaxVel (void)
Gets the desired maximum velocity (mm/sec).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.6 ArActionDesired Class Reference 53

• virtual double getMaxVelStrength (void)
Gets the maximum velocity strength.

• virtual double getMaxNegVel (void)
Gets the desired maximum negative velocity (-mm/sec).

• virtual double getMaxNegVelStrength (void)
Gets the desired maximum negative velocity strength.

• virtual double getTransAccel (void)
Gets the desired trans acceleration (mm/sec).

• virtual double getTransAccelStrength (void)
Gets the desired trans acceleration strength.

• virtual double getTransDecel (void)
Gets the desired trans deceleration (-mm/sec/sec).

• virtual double getTransDecelStrength (void)
Gets the desired trans deceleration strength.

• virtual double getMaxRotVel (void)
Gets the maximum rotational velocity.

• virtual double getMaxRotVelStrength (void)
Gets the maximum rotational velocity strength.

• virtual double getRotAccel (void)
Gets the desired rotational acceleration (mm/sec).

• virtual double getRotAccelStrength (void)
Gets the desired rotational acceleration strength.

• virtual double getRotDecel (void)
Gets the desired rotational deceleration (-mm/sec/sec).

• virtual double getRotDecelStrength (void)
Gets the desired rotational deceleration strength.

• virtual void merge (ArActionDesired ∗actDesired)
Merges the given ArActionDesired into this one (this one has precedence),
internal.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

54 Aria Class Documentation

• virtual void startAverage (void)

Starts the process of avereraging together different desireds.

• virtual void addAverage (ArActionDesired ∗actDesired)

Adds another actionDesired into the mix to average.

• virtual void endAverage (void)

Ends the process of avereraging together different desireds.

• virtual void accountForRobotHeading (double robotHeading)

Accounts for robot heading, mostly internal.

4.6.1 Detailed Description

Class used to say what movement is desired.

This class is use by actions to report what they want to want to do (hence the
name).

The way it works, is that translational (front/back) and rotational (right/left)
are seperate. Translational movement uses velocity, while rotational movement
uses change in heading from current heading. Translational and rotational each
have their own strength value. Both translational and rotational movement
have maximum velocities as well, that also have their own strengths.

The strength value reflects how strongly an action wants to do the chosen
movement command, the resolver (ArResolver (p. 332)) will combine these
strengths and figure out what to do based on them.

For all strength values there is a total of 1.0 strength to be had. The range for
strength is from 0 to 1. This is simply a convention that ARIA uses by default, if
you don’t like it, you can override this class and make an ArResolver (p. 332).

4.6.2 Member Function Documentation

4.6.2.1 virtual void ArActionDesired::accountForRobotHeading
(double robotHeading) [inline, virtual]

Accounts for robot heading, mostly internal.

This accounts for the robots heading, and transforms the set heading on this
actionDesired into a delta heading so it can be merged and averaged and the
like

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.6 ArActionDesired Class Reference 55

Parameters:
robotHeading the heading the real actual robot is at now

4.6.2.2 virtual void ArActionDesired::addAverage
(ArActionDesired ∗ actDesired) [inline, virtual]

Adds another actionDesired into the mix to average.

For a description of how to use this, see startAverage.

Parameters:
actDesired the actionDesired to add into the average

4.6.2.3 virtual void ArActionDesired::endAverage (void) [inline,
virtual]

Ends the process of avereraging together different desireds.

For a description of how to use this, see startAverage.

4.6.2.4 virtual void ArActionDesired::merge (ArActionDesired ∗
actDesired) [inline, virtual]

Merges the given ArActionDesired into this one (this one has precedence), in-
ternal.

This merges in the two different action values, accountForRobotHeading MUST
be done before this is called (on both actions), since this merges their delta
headings, and the deltas can’t be known unless the account for angle is done.

Parameters:
actDesired the actionDesired to merge with this one

4.6.2.5 virtual void ArActionDesired::setDeltaHeading (double
deltaHeading, double strength = MAX STRENGTH)
[inline, virtual]

Sets the delta heading (deg) and strength.

If there’s already a rotVel set this WILL NOT work.

Parameters:
deltaHeading desired change in heading (deg)
strength strength given to this, defaults to MAX STRENGTH (1.0)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

56 Aria Class Documentation

4.6.2.6 virtual void ArActionDesired::setHeading (double heading,
double strength = MAX STRENGTH) [inline, virtual]

Sets the absolute heading (deg).

If there’s already a rotVel set this WILL NOT work. This is a way to set the
heading instead of using a delta, there is no get for this, because accountFor-
RobotHeading MUST be called (this should be called by all resolvers, but if you
want to call it you can, thats fine).

Parameters:
heading desired heading (deg)
strength strength given to this, defaults to MAX STRENGTH (1.0)

4.6.2.7 virtual void ArActionDesired::setMaxNegVel (double
maxVel, double strength = MAX STRENGTH) [inline,
virtual]

Sets the maximum velocity for going backwards (-mm/sec) and strength.

This sets the maximum negative velocity for this cycle. Check the ArRobot
(p. 362) class notes for more details.

Parameters:
maxVel desired maximum velocity for going backwards (-mm/sec)
strength strength given to this, defaults to MAX STRENGTH (1.0)

4.6.2.8 virtual void ArActionDesired::setMaxRotVel (double
maxVel, double strength = MAX STRENGTH) [inline,
virtual]

Sets the maximum rotational velocity (deg/sec) and strength.

This sets the maximum rotational velocity for this cycle (this is sent down to
the robot). Check the ArRobot (p. 362) class notes for more details.

Parameters:
maxVel desired maximum rotational velocity (deg/sec)
strength strength given to this, defaults to MAX STRENGTH (1.0)

4.6.2.9 virtual void ArActionDesired::setMaxVel (double maxVel,
double strength = MAX STRENGTH) [inline, virtual]

Sets the maximum velocity (+mm/sec) and strength.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.6 ArActionDesired Class Reference 57

This sets the maximum positive velocity for this cycle. Check the ArRobot
(p. 362) class notes for more details.

Parameters:
maxVel desired maximum velocity (+mm/sec)
strength strength given to this, defaults to MAX STRENGTH (1.0)

4.6.2.10 virtual void ArActionDesired::setRotAccel (double
rotAccel, double strength = MAX STRENGTH) [inline,
virtual]

Sets the rotational acceleration (deg/sec/sec) and strength.

This sets the rotational acceleration for this cycle (this is sent down to the
robot). Check the ArRobot (p. 362) class notes for more details.

Parameters:
rotAccel desired rotational acceleration (deg/sec/sec)
strength strength given to this, defaults to MAX STRENGTH (1.0)

4.6.2.11 virtual void ArActionDesired::setRotDecel (double
rotDecel, double strength = MAX STRENGTH) [inline,
virtual]

Sets the rotational deceleration (deg/sec/sec) and strength.

This sets the rotational deceleration for this cycle (this is sent down to the
robot). Check the ArRobot (p. 362) class notes for more details.

Parameters:
rotDecel desired rotational deceleration (deg/sec/sec)
strength strength given to this, defaults to MAX STRENGTH (1.0)

4.6.2.12 virtual void ArActionDesired::setRotVel (double rotVel,
double strength = MAX STRENGTH) [inline, virtual]

Sets the rotational velocity.

If there’s already a delta heading or heading this WILL NOT work.

Parameters:
rotVel desired rotational velocity (deg/sec)
strength strength given to this, defaults to MAX STRENGTH (1.0)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

58 Aria Class Documentation

4.6.2.13 virtual void ArActionDesired::setTransAccel (double
transAccel, double strength = MAX STRENGTH)
[inline, virtual]

Sets the translation acceleration (deg/sec/sec) and strength.

This sets the translation acceleration for this cycle (this is sent down to the
robot). Check the ArRobot (p. 362) class notes for more details.

Parameters:
transAccel desired translation acceleration (deg/sec/sec)

strength strength given to this, defaults to MAX STRENGTH (1.0)

4.6.2.14 virtual void ArActionDesired::setTransDecel (double
transDecel, double strength = MAX STRENGTH)
[inline, virtual]

Sets the translation deceleration (deg/sec/sec) and strength.

This sets the translation deceleration for this cycle (this is sent down to the
robot). Check the ArRobot (p. 362) class notes for more details.

Parameters:
transDecel desired translation deceleration (deg/sec/sec)

strength strength given to this, defaults to MAX STRENGTH (1.0)

4.6.2.15 virtual void ArActionDesired::setVel (double vel, double
strength = MAX STRENGTH) [inline, virtual]

Sets the velocity (mm/sec) and strength.

Parameters:
vel desired vel (mm/sec)

strength strength given to this, defaults to MAX STRENGTH (1.0)

4.6.2.16 virtual void ArActionDesired::startAverage (void)
[inline, virtual]

Starts the process of avereraging together different desireds.

There is a three step process for averaging actionDesireds together, first start-
Average must be done to set up the process, then addAverage must be done

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.6 ArActionDesired Class Reference 59

with each average that is desired, then finally endAverage should be used, after
that is done then the normal process of getting the results out should be done.

The documentation for this class was generated from the following files:

• ArActionDesired.h
• ArActionDesired.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

60 Aria Class Documentation

4.7 ArActionDesiredChannel Class Reference

Class used by ArActionDesired (p. 51) for each channel, internal.

#include <ArActionDesired.h>

4.7.1 Detailed Description

Class used by ArActionDesired (p. 51) for each channel, internal.

4.7.2 Member Data Documentation

4.7.2.1 const double ArActionDesiredChannel::MAX STRENGTH
[static]

Initial value:

ArActionDesired::MAX_STRENGTH

4.7.2.2 const double ArActionDesiredChannel::MIN STRENGTH
[static]

Initial value:

ArActionDesired::MIN_STRENGTH

4.7.2.3 const double ArActionDesiredChannel::NO STRENGTH
[static]

Initial value:

ArActionDesired::NO_STRENGTH

The documentation for this class was generated from the following files:

• ArActionDesired.h
• ArActionDesired.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.8 ArActionGoto Class Reference 61

4.8 ArActionGoto Class Reference

This action goes to a given ArPose (p. 299) very naively.

#include <ArActionGoto.h>

Inheritance diagram for ArActionGoto::

ArActionGoto

ArAction

Public Methods

• bool haveAchievedGoal (void)
Sees if the goal has been achieved.

• void cancelGoal (void)
Cancels the goal the robot has.

• void setGoal (ArPose goal)
Sets a new goal and sets the action to go there.

• ArPose getGoal (void)
Gets the goal the action has.

• void setCloseDist (double closeDist)
Set the distance which is close enough to the goal (mm);.

• double getCloseDist (void)
Gets the distance which is close enough to the goal (mm).

• void setSpeed (double speed)
Sets the speed the action will travel to the goal at (mm/sec).

• double getSpeed (void)
Gets the speed the action will travel to the goal at (mm/sec).

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)
Fires the action, returning what the action wants to do.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

62 Aria Class Documentation

• virtual ArActionDesired ∗ getDesired (void)
Gets what this action wants to do (for display purposes).

4.8.1 Detailed Description

This action goes to a given ArPose (p. 299) very naively.

This action naively drives straight towards a given ArPose (p. 299)... the action
stops when it gets closeDist away... it travels to the point at speed mm/sec.

You can give it a new goal with setGoal, cancel its movement with cancelGoal,
and see if it got there with haveAchievedGoal.

This doesn’t avoid obstacles or anything, you could have an avoid routine at a
higher priority to avoid on the way there... but for real and intelligent looking
navigation you should use something like Saphira’s Gradient navigation.

4.8.2 Member Function Documentation

4.8.2.1 ArActionDesired ∗ ArActionGoto::fire (ArActionDesired
currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 42).

The documentation for this class was generated from the following files:

• ArActionGoto.h
• ArActionGoto.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.9 ArActionGroup Class Reference 63

4.9 ArActionGroup Class Reference

Class for groups of actions to accomplish one thing.

#include <ArActionGroup.h>

Inheritance diagram for ArActionGroup::

ArActionGroup

ArActionGroupInput ArActionGroupStop ArActionGroupTeleop ArActionGroupUnguardedTeleop ArActionGroupWander

Public Methods

• ArActionGroup (ArRobot ∗robot)

Constructor.

• virtual ∼ArActionGroup ()

Destructor, it also deletes the actions in its group.

• virtual void addAction (ArAction ∗action, int priority)

Adds the action to the robot this group uses with the given priority.

• virtual void remAction (ArAction ∗action)

Removes the action from the robot this group uses.

• virtual void activate (void)

Activates all the actions in this group.

• virtual void activateExclusive (void)

Activates all the actions in this group and deactivates all others.

• virtual void deactivate (void)

Deactivates all the actions in this group.

• virtual void removeActions (void)

Removes all the actions in this group from the robot.

• virtual std::list< ArAction ∗> ∗ getActionList (void)

Gets the action list (use this to delete actions after doing removeActions).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

64 Aria Class Documentation

4.9.1 Detailed Description

Class for groups of actions to accomplish one thing.

This class is used to have a group of ArActions and turn them on and off in
aggregate... this is so that you can say have a group of like 5 behaviors for teleop
or wander, and just turn ’em all on and off at once. Note that the destructor
by default will delete the actions added to the group, this is controlled with
a flag to the constructor though, so you can have it how you want.... this is
nice though so you can just do addAction(new ArActionWhatever(blah, blah,
blah), 90); and not worry about the deletion (since the destructor will do it),
just delete the group... if for some reason (I’d advise against it) you are using
one action in multiple groups, don’t use this feature, ie pass in false to the
constructor for it or you’ll wind up with a crash when the action is deleted by
both groups (again, you should probably only have an action in one group).

4.9.2 Constructor & Destructor Documentation

4.9.2.1 ArActionGroup::ArActionGroup (ArRobot ∗ robot)

Constructor.

@param robot The robot that this action group is attached to

@param deleteActionsOnDestruction if this is true then when the destructor is
called the actions that this group has will be deleted

4.9.3 Member Function Documentation

4.9.3.1 void ArActionGroup::addAction (ArAction ∗ action, int
priority) [virtual]

Adds the action to the robot this group uses with the given priority.

@param action the action to add to the robot @param priority the priority to
give the action @see ArRobot::addAction (p. 381)

4.9.3.2 void ArActionGroup::remAction (ArAction ∗ action)
[virtual]

Removes the action from the robot this group uses.

@param action the action to remove from the robot @see ArRobot::rem-
Action (p. 404)

The documentation for this class was generated from the following files:

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.9 ArActionGroup Class Reference 65

• ArActionGroup.h
• ArActionGroup.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

66 Aria Class Documentation

4.10 ArActionGroupInput Class Reference

Input to drive the robot.

#include <ArActionGroups.h>

Inheritance diagram for ArActionGroupInput::

ArActionGroupInput

ArActionGroup

4.10.1 Detailed Description

Input to drive the robot.

This class is just useful for teleoping the robot under your own joystick and
keyboard control... Note that you the predefined ArActionGroups in ARIA are
made only to be used exclusively... they won’t combine.

The documentation for this class was generated from the following files:

• ArActionGroups.h
• ArActionGroups.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.11 ArActionGroupStop Class Reference 67

4.11 ArActionGroupStop Class Reference

Stop the robot.

#include <ArActionGroups.h>

Inheritance diagram for ArActionGroupStop::

ArActionGroupStop

ArActionGroup

4.11.1 Detailed Description

Stop the robot.

This class is just useful for having the robot stopped... Note that you the
predefined ArActionGroups in ARIA are made only to be used exclusively...
they won’t combine.

The documentation for this class was generated from the following files:

• ArActionGroups.h
• ArActionGroups.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

68 Aria Class Documentation

4.12 ArActionGroupTeleop Class Reference

Teleop the robot.

#include <ArActionGroups.h>

Inheritance diagram for ArActionGroupTeleop::

ArActionGroupTeleop

ArActionGroup

4.12.1 Detailed Description

Teleop the robot.

This class is just useful for teleoping the robot and having these actions read
the joystick and keyboard... Note that you the predefined ArActionGroups in
ARIA are made only to be used exclusively... they won’t combine.

The documentation for this class was generated from the following files:

• ArActionGroups.h
• ArActionGroups.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.13 ArActionGroupUnguardedTeleop Class Reference 69

4.13 ArActionGroupUnguardedTeleop Class
Reference

Teleop the robot in an unguarded and unsafe manner.

#include <ArActionGroups.h>

Inheritance diagram for ArActionGroupUnguardedTeleop::

ArActionGroupUnguardedTeleop

ArActionGroup

4.13.1 Detailed Description

Teleop the robot in an unguarded and unsafe manner.

This class is just useful for teleoping the robot in an unguarded and unsafe
manner and having these actions read the joystick and keyboard... Note that you
the predefined ArActionGroups in ARIA are made only to be used exclusively...
they won’t combine.

The documentation for this class was generated from the following files:

• ArActionGroups.h
• ArActionGroups.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

70 Aria Class Documentation

4.14 ArActionGroupWander Class Reference

Has the robot wander.

#include <ArActionGroups.h>

Inheritance diagram for ArActionGroupWander::

ArActionGroupWander

ArActionGroup

4.14.1 Detailed Description

Has the robot wander.

This class is useful for having the robot wander... Note that you the predefined
ArActionGroups in ARIA are made only to be used exclusively... they won’t
combine.

The documentation for this class was generated from the following files:

• ArActionGroups.h
• ArActionGroups.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.15 ArActionInput Class Reference 71

4.15 ArActionInput Class Reference

Action for stopping the robot.

#include <ArActionInput.h>

Inheritance diagram for ArActionInput::

ArActionInput

ArAction

Public Methods

• ArActionInput (const char ∗name=”Input”)
Constructor.

• virtual ∼ArActionInput ()
Destructor.

• void setVel (double vel)
Set velocity (cancels deltaVel).

• void deltaVel (double delta)
Increment/decrement the velocity (cancels setVel).

• void deltaHeading (double delta)
Increment/decrement the heading.

• void deltaHeadingFromCurrent (double delta)
Increment/decrement the heading from current.

• void setRotVel (double rotVel)
Sets a rotational velocity.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)
Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)
Gets what this action wants to do (for display purposes).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

72 Aria Class Documentation

• void activate (void)
Activate the action.

4.15.1 Detailed Description

Action for stopping the robot.

This action simply sets the robot to a 0 velocity and a deltaHeading of 0.

4.15.2 Constructor & Destructor Documentation

4.15.2.1 ArActionInput::ArActionInput (const char ∗ name =
”Input”)

Constructor.

Parameters:
name name of the action

4.15.3 Member Function Documentation

4.15.3.1 ArActionDesired ∗ ArActionInput::fire (ArActionDesired
currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 42).

The documentation for this class was generated from the following files:

• ArActionInput.h
• ArActionInput.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.16 ArActionJoydrive Class Reference 73

4.16 ArActionJoydrive Class Reference

This action will use the joystick for input to drive the robot.

#include <ArActionJoydrive.h>

Inheritance diagram for ArActionJoydrive::

ArActionJoydrive

ArAction

Public Methods

• ArActionJoydrive (const char ∗name=”joydrive”, double trans-
VelMax=400, double turnAmountMax=15, bool stopIfNoButton-
Pressed=true, bool useOSCalForJoystick=true)

Constructor.

• virtual ∼ArActionJoydrive ()
Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)
Fires the action, returning what the action wants to do.

• bool joystickInited (void)
Whether the joystick is initalized or not.

• void setSpeeds (double transVelMax, double turnAmountMax)
Set Speeds.

• void setStopIfNoButtonPressed (bool stopIfNoButtonPressed)
Set if we’ll stop if no button is pressed, otherwise just do nothing.

• bool getStopIfNoButtonPressed (void)
Get if we’ll stop if no button is pressed, otherwise just do nothing.

• void setThrottleParams (double lowSpeed, double highSpeed)
Sets the params on the throttle (throttle unused unless you call this).

• void setUseOSCal (bool useOSCal)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

74 Aria Class Documentation

Sets whether to use OSCalibration the joystick or not.

• bool getUseOSCal (void)
Gets whether OSCalibration is being used for the joystick or not.

• ArJoyHandler ∗ getJoyHandler (void)
Gets the joyHandler.

• virtual ArActionDesired ∗ getDesired (void)
Gets what this action wants to do (for display purposes).

4.16.1 Detailed Description

This action will use the joystick for input to drive the robot.

This class creates its own ArJoyHandler (p. 230) to get input from the joystick.
Then it will scale the speed between 0 and the given max for velocity and
turning, up and down on the joystick go forwards/backwards while right and
left go right and left. You must press in one of the two joystick buttons for the
class to pay attention to the joystick.

NOTE: The joystick does not save calibration information, so you must calibrate
the joystick before each time you use it. To do this, press the button for at least
a half a second while the joystick is in the middle. Then let go of the button
and hold the joystick in the upper left for at least a half second and then in the
lower right corner for at least a half second.

4.16.2 Constructor & Destructor Documentation

4.16.2.1 ArActionJoydrive::ArActionJoydrive (const char ∗
name = ”joydrive”, double transVelMax = 400, double
turnAmountMax = 15, bool stopIfNoButtonPressed =
true, bool useOSCalForJoystick = true)

Constructor.

This action is for driving around the robot with a joystick, you must hold in
a button on the joystick and then lean the joytsick over to have it drive. You
may need to calibrate the joystick for it to work right, for details about this
see ArJoyHandler (p. 230). If the Aria (p. 221) static class already has a
joyhandler this class will use that otherwise it’ll make and initialize one and use
that (setting it in the Aria (p. 221) class)

Parameters:
name the name of this action

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.16 ArActionJoydrive Class Reference 75

transVelMax the maximum velocity the joydrive action will go, it reachs
this when the joystick is all the way forwards

turnAmountMax the maximum amount the joydrive action will turn, it
reachs this when the joystick is all the way forwards

stopIfNoButtonPressed if this is true and there is a joystick and no
button is pressed, the action will have the robot stop... otherwise it’ll
do nothing (letting lower priority actions fire)

See also:
ArJoyHandler::setUseOSCal (p. 235)

4.16.3 Member Function Documentation

4.16.3.1 ArActionDesired ∗ ArActionJoydrive::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 42).

4.16.3.2 bool ArActionJoydrive::getUseOSCal (void)

Gets whether OSCalibration is being used for the joystick or not.

See also:
ArJoyHandler::getUseOSCal (p. 234)

4.16.3.3 void ArActionJoydrive::setUseOSCal (bool useOSCal)

Sets whether to use OSCalibration the joystick or not.

See also:
ArJoyHandler::setUseOSCal (p. 235)

The documentation for this class was generated from the following files:

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

76 Aria Class Documentation

• ArActionJoydrive.h
• ArActionJoydrive.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.17 ArActionKeydrive Class Reference 77

4.17 ArActionKeydrive Class Reference

This action will use the keyboard arrow keys for input to drive the robot.

#include <ArActionKeydrive.h>

Inheritance diagram for ArActionKeydrive::

ArActionKeydrive

ArAction

Public Methods

• ArActionKeydrive (const char ∗name=”keydrive”, double transVel-
Max=400, double turnAmountMax=24, double velIncrement=25, double
turnIncrement=8)

Constructor.

• virtual ∼ArActionKeydrive ()
Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)
Fires the action, returning what the action wants to do.

• void setSpeeds (double transVelMax, double turnAmountMax)
For setting the maximum speeds.

• void setIncrements (double velIncrement, double turnIncrement)
For setting the increment amounts.

• virtual ArActionDesired ∗ getDesired (void)
Gets what this action wants to do (for display purposes).

• virtual void setRobot (ArRobot ∗robot)
Sets the robot this action is driving.

• virtual void activate (void)
Activate the action.

• virtual void deactivate (void)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

78 Aria Class Documentation

Deactivate the action.

• void takeKeys (void)

Takes the keys this action wants to use to drive.

• void giveUpKeys (void)

Gives up the keys this action wants to use to drive.

• void up (void)

Internal, callback for up arrow.

• void down (void)

Internal, callback for down arrow.

• void left (void)

Internal, callback for left arrow.

• void right (void)

Internal, callback for right arrow.

• void space (void)

Internal, callback for space key.

4.17.1 Detailed Description

This action will use the keyboard arrow keys for input to drive the robot.

4.17.2 Member Function Documentation

4.17.2.1 ArActionDesired ∗ ArActionKeydrive::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.17 ArActionKeydrive Class Reference 79

Reimplemented from ArAction (p. 42).

The documentation for this class was generated from the following files:

• ArActionKeydrive.h
• ArActionKeydrive.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

80 Aria Class Documentation

4.18 ArActionLimiterBackwards Class Refer-
ence

Action to limit the backwards motion of the robot.

#include <ArActionLimiterBackwards.h>

Inheritance diagram for ArActionLimiterBackwards::

ArActionLimiterBackwards

ArAction

Public Methods

• ArActionLimiterBackwards (const char ∗name=”speed limiter”,
double stopDistance=-250, double slowDistance=-600, double max-
BackwardsSpeed=-250)

Constructor.

• virtual ∼ArActionLimiterBackwards ()

Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)

Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)

Gets what this action wants to do (for display purposes).

4.18.1 Detailed Description

Action to limit the backwards motion of the robot.

This class limits the backwards motion of the robot according to the parameters
given.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.18 ArActionLimiterBackwards Class Reference 81

4.18.2 Constructor & Destructor Documentation

4.18.2.1 ArActionLimiterBackwards::ArActionLimiterBackwards
(const char ∗ name = ”speed limiter”, double
stopDistance = -250, double slowDistance = -600, double
maxBackwardsSpeed = -250)

Constructor.

Parameters:
name name of the action

stopDistance distance at which to stop (mm)

slowDistance distance at which to slow down (mm)

maxBackwardsSpeed maximum backwards speed, speed allowed scales
from this to 0 at the stop distance (mm/sec)

4.18.3 Member Function Documentation

4.18.3.1 ArActionDesired ∗ ArActionLimiterBackwards::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 42).

The documentation for this class was generated from the following files:

• ArActionLimiterBackwards.h
• ArActionLimiterBackwards.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

82 Aria Class Documentation

4.19 ArActionLimiterForwards Class Reference

Action to limit the forwards motion of the robot.

#include <ArActionLimiterForwards.h>

Inheritance diagram for ArActionLimiterForwards::

ArActionLimiterForwards

ArAction

Public Methods

• ArActionLimiterForwards (const char ∗name=”speed limiter”, dou-
ble stopDistance=250, double slowDistance=600, double slowSpeed=250,
double widthRatio=1.5)

Constructor.

• virtual ∼ArActionLimiterForwards ()

Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)

Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)

Gets what this action wants to do (for display purposes).

4.19.1 Detailed Description

Action to limit the forwards motion of the robot.

This action uses the sensors to find a maximum speed to travel at

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.19 ArActionLimiterForwards Class Reference 83

4.19.2 Constructor & Destructor Documentation

4.19.2.1 ArActionLimiterForwards::ArActionLimiterForwards
(const char ∗ name = ”speed limiter”, double stopDistance
= 250, double slowDistance = 600, double slowSpeed =
250, double widthRatio = 1.5)

Constructor.

Parameters:
name name of the action

stopDistance distance at which to stop (mm)

slowDistance distance at which to slow down (mm)

slowSpeed speed allowed at slowDistance, scales to 0 at slow distance
(mm/sec)

4.19.3 Member Function Documentation

4.19.3.1 ArActionDesired ∗ ArActionLimiterForwards::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 42).

The documentation for this class was generated from the following files:

• ArActionLimiterForwards.h
• ArActionLimiterForwards.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

84 Aria Class Documentation

4.20 ArActionLimiterTableSensor Class Refer-
ence

Action to limit speed based on whether there the table-sensors see anything.

#include <ArActionLimiterTableSensor.h>

Inheritance diagram for ArActionLimiterTableSensor::

ArActionLimiterTableSensor

ArAction

Public Methods

• ArActionLimiterTableSensor (const char ∗name=”TableSensor-
Limiter”)

Constructor.

• virtual ∼ArActionLimiterTableSensor ()

Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)

Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)

Gets what this action wants to do (for display purposes).

4.20.1 Detailed Description

Action to limit speed based on whether there the table-sensors see anything.

This action limits speed to 0 if the table-sensors see anything in front of the
robot. The action will only work if the robot has table sensors, meaning that
the robots parameter file has them listed as true.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.20 ArActionLimiterTableSensor Class Reference 85

4.20.2 Member Function Documentation

4.20.2.1 ArActionDesired ∗ ArActionLimiterTableSensor::fire
(ArActionDesired currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 42).

The documentation for this class was generated from the following files:

• ArActionLimiterTableSensor.h
• ArActionLimiterTableSensor.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

86 Aria Class Documentation

4.21 ArActionStallRecover Class Reference

Action to recover from a stall.

#include <ArActionStallRecover.h>

Inheritance diagram for ArActionStallRecover::

ArActionStallRecover

ArAction

Public Methods

• ArActionStallRecover (const char ∗name=”stall recover”, double
obstacleDistance=225, int cyclesToMove=50, double speed=150, double
degreesToTurn=45)

Constructor.

• virtual ∼ArActionStallRecover ()

Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)

Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)

Gets what this action wants to do (for display purposes).

4.21.1 Detailed Description

Action to recover from a stall.

This action tries to recover if one of the wheels has stalled, it has a series of
actions it tries in order to get out of the stall.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.21 ArActionStallRecover Class Reference 87

4.21.2 Constructor & Destructor Documentation

4.21.2.1 AREXPORT ArActionStallRecover::ArActionStall-
Recover (const char ∗ name = ”stall recover”, double
obstacleDistance = 225, int cyclesToMove = 50, double
speed = 150, double degreesToTurn = 45)

Constructor.

Parameters:
name name of the action

obstacleDistance distance at which not to move because of obstacle.
(mm)

cyclesToMove number of cycles to move (# of cycles)

speed speed at which to back up or go forward (mm/sec)

degreesToTurn number of degrees to turn (deg)

4.21.3 Member Function Documentation

4.21.3.1 AREXPORT ArActionDesired ∗ ArActionStall-
Recover::fire (ArActionDesired currentDesired)
[virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 42).

The documentation for this class was generated from the following files:

• ArActionStallRecover.h
• ArActionStallRecover.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

88 Aria Class Documentation

4.22 ArActionStop Class Reference

Action for stopping the robot.

#include <ArActionStop.h>

Inheritance diagram for ArActionStop::

ArActionStop

ArAction

Public Methods

• ArActionStop (const char ∗name=”stop”)
Constructor.

• virtual ∼ArActionStop ()
Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)
Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)
Gets what this action wants to do (for display purposes).

4.22.1 Detailed Description

Action for stopping the robot.

This action simply sets the robot to a 0 velocity and a deltaHeading of 0.

4.22.2 Constructor & Destructor Documentation

4.22.2.1 ArActionStop::ArActionStop (const char ∗ name =
”stop”)

Constructor.

Parameters:
name name of the action

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.22 ArActionStop Class Reference 89

4.22.3 Member Function Documentation

4.22.3.1 ArActionDesired ∗ ArActionStop::fire (ArActionDesired
currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 42).

The documentation for this class was generated from the following files:

• ArActionStop.h
• ArActionStop.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

90 Aria Class Documentation

4.23 ArActionTurn Class Reference

Action to turn when the behaviors with more priority have limited the speed.

#include <ArActionTurn.h>

Inheritance diagram for ArActionTurn::

ArActionTurn

ArAction

Public Methods

• ArActionTurn (const char ∗name=”turn”, double speedStartTurn=200,
double speedFullTurn=100, double turnAmount=15)

Constructor.

• virtual ∼ArActionTurn ()

Destructor.

• virtual ArActionDesired ∗ fire (ArActionDesired currentDesired)

Fires the action, returning what the action wants to do.

• virtual ArActionDesired ∗ getDesired (void)

Gets what this action wants to do (for display purposes).

4.23.1 Detailed Description

Action to turn when the behaviors with more priority have limited the speed.

This action is basically made so that you can just have a ton of limiters of
different kinds and types to keep speed under control, then throw this into
the mix to have the robot wander. Note that the turn amount ramps up to
turnAmount starting at 0 at speedStartTurn and hitting the full amount at
speedFullTurn.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.23 ArActionTurn Class Reference 91

4.23.2 Member Function Documentation

4.23.2.1 ArActionDesired ∗ ArActionTurn::fire (ArActionDesired
currentDesired) [virtual]

Fires the action, returning what the action wants to do.

Parameters:
currentDesired this is what the current resolver has for its desired, this

is SOLELY for the purpose of giving information to the action

Returns:
pointer to what this action wants to do, NULL if it wants to do nothing

Reimplemented from ArAction (p. 42).

The documentation for this class was generated from the following files:

• ArActionTurn.h
• ArActionTurn.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

92 Aria Class Documentation

4.24 ArACTS 1 2 Class Reference

Driver for ACTS.

#include <ArACTS.h>

Public Types

• enum ActsConstants { NUM CHANNELS = 32, MAX BLOBS
= 10, BLOB DATA SIZE = 16, DATA HEADER = NUM -
CHANNELS ∗ 4, MAX DATA = 5300 }

Public Methods

• ArACTS 1 2 ()

Constructor.

• virtual ∼ArACTS 1 2 ()

Destructor.

• bool openPort (ArRobot ∗robot, const char ∗host=”localhost”, int
port=5001)

Opens the connection to ACTS.

• bool closePort (void)

Closes the connection.

• bool isConnected (void)

Finds out whether there is connection.

• ArRobot ∗ getRobot (void)

Gets the robot this class is connected to.

• void setRobot (ArRobot ∗robot)

Sets the robot this class is connected to.

• bool requestPacket (void)

Requests another packet.

• bool requestQuit (void)

Requests that ACTS quits.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.24 ArACTS 1 2 Class Reference 93

• bool receiveBlobInfo (void)

Gets the blob information from the connection to acts.

• int getNumBlobs (int channel)

Gets the number of blobs for the given chanel.

• bool getBlob (int channel, int blobNumber, ArACTSBlob ∗blob)

Gets the given blob from the given channel.

• void actsHandler (void)

A function that reads information from acts and requests packets.

• void invert (int width=160, int height=120)

This will make the image stats inverted (for use with an inverted camera).

Protected Methods

• int getData (char ∗rawData)

an iternal function to strip out the information from some bytes.

4.24.1 Detailed Description

Driver for ACTS.

4.24.2 Member Enumeration Documentation

4.24.2.1 enum ArACTS 1 2::ActsConstants

Enumeration values:
NUM CHANNELS Number of channels there are.

MAX BLOBS Number of blobs per channel.

BLOB DATA SIZE Size of the blob data.

DATA HEADER Size of the data header.

MAX DATA Maximum amount of data.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

94 Aria Class Documentation

4.24.3 Member Function Documentation

4.24.3.1 bool ArACTS 1 2::closePort (void)

Closes the connection.

Closes the port to the ACTS server

Returns:
true if the connection was closed properly, false otherwise

4.24.3.2 bool ArACTS 1 2::getBlob (int channel, int blobNumber,
ArACTSBlob ∗ blob)

Gets the given blob from the given channel.

Gets the blobNumber from the channel given, fills the information for that blob
into the given blob structure.

Parameters:
channel the channel to get the blob from
blobNumber the number of the blob to get from the given channel
blob the blob instance to fill in with the data about the requested blob

Returns:
true if the blob instance could be filled in from the

4.24.3.3 int ArACTS 1 2::getNumBlobs (int channel)

Gets the number of blobs for the given chanel.

Returns:
the number of blobs on the channel, or -1 if the channel is invalid

4.24.3.4 void ArACTS 1 2::invert (int width = 160, int height =
120)

This will make the image stats inverted (for use with an inverted camera).

This inverts the image, but since ACTS doesn’t tell this driver the height or
width, you need to provide both of those for the image, default is 160x120.

Parameters:
width the width of the images acts is grabbing (pixels)
height the height of the images acts is grabbing (pixels)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.24 ArACTS 1 2 Class Reference 95

4.24.3.5 bool ArACTS 1 2::openPort (ArRobot ∗ robot, const char
∗ host = ”localhost”, int port = 5001)

Opens the connection to ACTS.

Opens the port to the ACTS server

Parameters:
robot the robot to attach this to, which puts a sensorInterp on the robot

so that ArACTS will always have fresh data from ACTS... giving a
NULL value is perfectly acceptable, in this case ArACTS will not do
any processing or requesting and you’ll have to use receiveBlobInfo
and requestPacket (or just call actsHandler)

port the port the ACTS server is running on, default of 5001
host the host the ACTS server is running on, default is localhost (ie this

machine)

Returns:
true if the connection was established, false otherwise

4.24.3.6 bool ArACTS 1 2::receiveBlobInfo (void)

Gets the blob information from the connection to acts.

Checks the connection to the ACTS server for data, if data is there it fills in
the blob information, otherwise just returns false

Returns:
true if there was new data and the data could be read succesfully

4.24.3.7 bool ArACTS 1 2::requestPacket (void)

Requests another packet.

Requests a packet from the ACTS server, specifically it sends the request to the
acts server over its connection

Returns:
true if the command was sent succesfully, false otherwise

4.24.3.8 bool ArACTS 1 2::requestQuit (void)

Requests that ACTS quits.

Sends a command to the ACTS server requesting that ACTS quit

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

96 Aria Class Documentation

Returns:
true if the request was sent succesfully, false otherwise

The documentation for this class was generated from the following files:

• ArACTS.h
• ArACTS.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.25 ArACTSBlob Class Reference 97

4.25 ArACTSBlob Class Reference

A class for the acts blob.

#include <ArACTS.h>

Public Methods

• ArACTSBlob ()
Constructor.

• virtual ∼ArACTSBlob ()
Destructor.

• int getArea (void)
Gets the number of pixels (area) covered by the blob.

• int getXCG (void)
Gets the X Center of Gravity of the blob.

• int getYCG (void)
Gets the Y Center of Gravity of the blob.

• int getLeft (void)
Gets the left border of the blob.

• int getRight (void)
Gets the right border of the blob.

• int getTop (void)
Gets the top border of the blob.

• int getBottom (void)
Gets the bottom border of the blob.

• void setArea (int area)
Sets the number of pixels (area) covered by the blob.

• void setXCG (int xcg)
Sets the X Center of Gravity of the blob.

• void setYCG (int ycg)
Sets the Y Center of Gravity of the blob.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

98 Aria Class Documentation

• void setLeft (int left)
Sets the left border of the blob.

• void setRight (int right)
Sets the right border fo the blob.

• void setTop (int top)
Sets the top border of the blob.

• void setBottom (int bottom)
Sets the bottom border of the blob.

• void log (void)
Prints the stats of the blob.

4.25.1 Detailed Description

A class for the acts blob.

The documentation for this class was generated from the following file:

• ArACTS.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.26 ArAMPTU Class Reference 99

4.26 ArAMPTU Class Reference

Driver for the AMPUT.

#include <ArAMPTU.h>

Inheritance diagram for ArAMPTU::

ArAMPTU

ArPTZ

Public Methods

• ArAMPTU (ArRobot ∗robot, int unitNumber=0)
Constructor.

• virtual ∼ArAMPTU ()
Destructor.

• virtual bool init (void)
Initializes the camera.

• virtual bool pan (int deg)
Pans to the given degrees.

• virtual bool panRel (int deg)
Pans relative to current position by given degrees.

• virtual bool tilt (int deg)
Tilts to the given degrees.

• virtual bool tiltRel (int deg)
Tilts relative to the current position by given degrees.

• virtual bool panTilt (int panDeg, int tiltDeg)
Pans and tilts to the given degrees.

• virtual bool panTiltRel (int panDeg, int tiltDeg)
Pans and tilts relatives to the current position by the given degrees.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

100 Aria Class Documentation

• bool panSlew (int deg)
Sets the rate that the camera pans at.

• bool tiltSlew (int deg)
Sets the rate the camera tilts at.

• virtual bool canZoom (void) const
Returns true if camera can zoom (or rather, if it is controlled by this).

• virtual int getMaxPosPan (void) const
Gets the highest positive degree the camera can pan to.

• virtual int getMaxNegPan (void) const
Gets the lowest negative degree the camera can pan to.

• virtual int getMaxPosTilt (void) const
Gets the highest positive degree the camera can tilt to.

• virtual int getMaxNegTilt (void) const
Gets the lowest negative degree the camera can tilt to.

• bool pause (void)
Stops current pan/tilt, can be resumed later.

• bool resume (void)
Resumes a previously paused pan/tilt.

• bool purge (void)
Stops motion and purges last command.

• bool requestStatus (void)
Retrieves the camera status.

• virtual int getPan (void) const
Gets the angle the camera is panned to.

• virtual int getTilt (void) const
Gets the angle the camera is tilted to.

4.26.1 Detailed Description

Driver for the AMPUT.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.26 ArAMPTU Class Reference 101

4.26.2 Constructor & Destructor Documentation

4.26.2.1 ArAMPTU::ArAMPTU (ArRobot ∗ robot, int unitNumber
= 0)

Constructor.

Parameters:
robot the robot to attach to

unitNumber the unit number for this packet, this needs to be 0-7

The documentation for this class was generated from the following files:

• ArAMPTU.h
• ArAMPTU.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

102 Aria Class Documentation

4.27 ArAMPTUCommands Class Reference

A class with the commands for the AMPTU.

#include <ArAMPTU.h>

Public Types

• enum { ABSTILT = 0x35, RELTILTU = 0x36, RELTILTD = 0x37,
ABSPAN = 0x31, RELPANCW = 0x32, RELPANCCW = 0x33,
PANTILT = 0x28, PANTILTUCW = 0x29, PANTILTDCW =
0x2A, PANTILTUCCW = 0x2B, PANTILTDCCW = 0x2C, ZOOM
= 0x3F, PAUSE = 0x39, CONT = 0x3A, PURGE = 0x3B, STATUS
= 0x3C, INIT = 0x3D, RESP = 0x3E, PANSLEW = 0x34, TILT-
SLEW = 0x38 }

4.27.1 Detailed Description

A class with the commands for the AMPTU.

4.27.2 Member Enumeration Documentation

4.27.2.1 anonymous enum

Enumeration values:
ABSTILT Absolute tilt.

RELTILTU Relative tilt, up.

RELTILTD Relative tilt, down.

ABSPAN Absolute pan.

RELPANCW Relative pan, clockwise.

RELPANCCW Relative pan, counter clockwise.

PANTILT Pan and tilt absolute.

PANTILTUCW Relative tilt up, pan clockwise.

PANTILTDCW Relative tilt down, pan clockwise.

PANTILTUCCW Relative tilt up, pan counter-clockwise.

PANTILTDCCW Relative tilt down, pan counter-clockwise.

ZOOM Zoom.

PAUSE Pause the current movement.

CONT Continue paused movement.

PURGE Stops movement and purges commands.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.27 ArAMPTUCommands Class Reference 103

STATUS Requests a status packet.

INIT Initializes the camera.

RESP Response.

PANSLEW Sets the pan slew rate.

TILTSLEW Sets the tilt slew rate.

The documentation for this class was generated from the following file:

• ArAMPTU.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

104 Aria Class Documentation

4.28 ArAMPTUPacket Class Reference

A class for for making commands to send to the AMPTU.

#include <ArAMPTU.h>

Inheritance diagram for ArAMPTUPacket::

ArAMPTUPacket

ArBasePacket

Public Methods

• ArAMPTUPacket (ArTypes::UByte2 bufferSize=30)

Constructor.

• virtual ∼ArAMPTUPacket ()

Destructor.

• unsigned char getUnitNumber (void)

Gets the unit number this packet is for.

• bool setUnitNumber (unsigned char unitNumber)

Sets the unit number htis packet is for.

• virtual void byteToBuf (ArTypes::Byte val)

Puts ArTypes::Byte (p. 522) into packets buffer.

• virtual void byte2ToBuf (ArTypes::Byte2 val)

Puts ArTypes::Byte2 (p. 522) into packets buffer.

• virtual void finalizePacket (void)

MakeFinals the packet in preparation for sending, must be done.

4.28.1 Detailed Description

A class for for making commands to send to the AMPTU.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.28 ArAMPTUPacket Class Reference 105

There are only a few functioning ways to put things into this packet, you MUST
use thse, if you use anything else your commands won’t work. You must use
byteToBuf and byte2ToBuf.

See also:
getUnitNumber (p. 105) , setUnitNumber (p. 105)

4.28.2 Member Function Documentation

4.28.2.1 unsigned char ArAMPTUPacket::getUnitNumber (void)

Gets the unit number this packet is for.

Each AMPTU has a unit number, so that you can daisy chain multiple ones
together. This number is incorporated into the packet header, thus the packet
has to know what the number is.

Returns:
the unit number this packet has

4.28.2.2 bool ArAMPTUPacket::setUnitNumber (unsigned char
unitNumber)

Sets the unit number htis packet is for.

Each AMPTU has a unit number, so that you can daisy chain multiple ones
together. This number is incorporated into the packet header, thus the packet
has to know what the number is.

Parameters:
unitNumber the unit number for this packet, this needs to be 0-7

Returns:
true if the number is acceptable, false otherwise

The documentation for this class was generated from the following files:

• ArAMPTU.h
• ArAMPTU.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

106 Aria Class Documentation

4.29 ArAnalogGyro Class Reference

Gyro plugin for the analog devices gyro.

#include <ArAnalogGyro.h>

Public Methods

• ArAnalogGyro (ArRobot ∗robot)
Constructor.

• virtual ∼ArAnalogGyro ()
Destructor.

• bool isActive (void)
Gets if we really have a gyro or not.

• double getHeading (void) const
Gets the heading the gyro thinks.

• int getTemperature (void) const
Gets the temperature the gyro has.

• void setFilterModel (double gyroSigma, double inertialVar, double rot-
Var, double transVar)

Set the kalman filter model.

• int getPacCount (void)
Returns the number of readings taken in the last second.

• double getAverage (void) const
Gets the average value.

• ArTime getAverageTaken (void) const
Gets the time the last average was taken.

• double getScalingFactor (void) const
Gets the scaling factor used for multiplying the readings (default 1.626).

• void setScalingFactor (double factor)
Sets the scaling factor used for multiplying the readings.

• bool handleGyroPacket (ArRobotPacket ∗packet)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.29 ArAnalogGyro Class Reference 107

Internal packet handler for the gyro packets.

• double encoderCorrect (ArPoseWithTime deltaPose)

internal function for correcting the encoder readings with the gyro data.

• void stabilizingCallback (void)

Internal connection callback.

4.29.1 Detailed Description

Gyro plugin for the analog devices gyro.

The gyro is an accessory connected to the robot’s microcontroller. The gyro’s
purpose is to correct for large errors due to wheel slippage, wheels coming off
the ground, and other factors like this (or for the skid steer of an AT). The
readings come back from the gyro over the robot’s analog ports. The microcon-
troller then packages up the readings and sends the readings to us just before
sending us the standard packet. We use these analog readings to calculate the
heading of the robot (integrating the velocities to give position). Then when the
standard packet comes in it calls our encoder correction callback which does a
simple kalman filter and fuses the encoder information’s heading with the gyro’s
heading to compute the most probable heading which it then returns and the
ArRobot (p. 362) object uses as its heading.

The robot’s dead reconing angle is fairly good if you have properly inflated tires
(if you have pneumatic tires) and if you have revcount sent correctly. You can
look at the operation manual to see how to change the revcount.

For the gyro, the reading changes based on temperature (both the readings and
temperature are reported in the packets from the microcontroller). The gyro
here will auto calibrate itself to the center of the range (which is what drifts
with temperature) whenever the robot is still for a second (judged by if its
translational and rotational velocities are less than 1 the whole time and if the
gyro readings are within .5% of the average). The scaling factor (between change
of voltage and amount of turn) didn’t seem to change between temperatures,
though it is a little different per gyro. This scaling factor is what you can get
and set with getScalingFactor and setScalingFactor. The default was within 2%
of correct most of the time. If you want to tune this more you can, by finding
a different scale factor. There is just one so that if a gyro is swapped between
robots the error doesn’t go up a lot. The function of the gyro is to correct for
wheel slippage and large errors, not to totally correct for all errors, but to bring
the errors into smaller zones that software can correct for more easily (such as
by localization). With gyros and inertials that try to correct for all errors they
wind up not very robust and with built in assumptions. This is why we’ve gone
with just integrating this gyro as opposed to someone elses inertial (we used to

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

108 Aria Class Documentation

use one, which is when we figured out the trouble with them).

If you create one of these objects it’ll add itself to the robot, if you delete it,
it will remove itself from the robot. There is one added in examples/demo.cpp.
Other examples of use are in examples/gyroExample.cpp and examples/gyro-
Drive.cpp.

4.29.2 Member Function Documentation

4.29.2.1 void ArAnalogGyro::setFilterModel (double gyroSigma,
double inertialVar, double rotVar, double transVar)
[inline]

Set the kalman filter model.

Parameters:
gyroSigma the amount its off statically

inertialVar the proportional amount it is off

rotVar the amount the rotation is off proportionally

transVar the amount the translation throws off the heading proportion-
ally

The documentation for this class was generated from the following files:

• ArAnalogGyro.h
• ArAnalogGyro.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.30 ArArg Class Reference 109

4.30 ArArg Class Reference

Argument class, mostly for actions, could be used for other things.

#include <ArArg.h>

Public Types

• enum Type { INVALID, INT, DOUBLE, STRING, BOOL, POSE,
FUNCTOR, DESCRIPTION HOLDER }

Public Methods

• ArArg ()
Default empty contructor.

• ArArg (const char ∗name, int ∗pointer, const char ∗description=””, int
minInt=INT MIN, int maxInt=INT MAX)

Constructor for making an integer argument.

• ArArg (const char ∗name, double ∗pointer, const char ∗description=””,
double minDouble=-HUGE VAL, double maxDouble=HUGE VAL)

Constructor for making a double argument.

• ArArg (const char ∗name, bool ∗pointer, const char ∗description=””)
Constructor for making a boolean argument.

• ArArg (const char ∗name, ArPose ∗pointer, const char ∗description=””)
Constructor for making a position argument.

• ArArg (const char ∗name, char ∗pointer, const char ∗description, size t
maxStrLen)

Constructor for making an argument of a string.

• ArArg (const char ∗name, ArRetFunctor1< bool, ArArgument-
Builder ∗> ∗setFunctor, ArRetFunctor< const std::list< Ar-
ArgumentBuilder ∗> ∗> ∗getFunctor, const char ∗description)

Constructor for making an argument that has functors to handle things.

• ArArg (const char ∗description)
Constructor for just holding a description (for ArConfig (p. 133)).

• ArArg (const ArArg &arg)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

110 Aria Class Documentation

Copy constructor.

• virtual ∼ArArg ()

Destructor.

• Type getType (void) const

Gets the type of the argument.

• const char ∗ getName (void) const

Gets the name of the argument.

• const char ∗ getDescription (void) const

Gets the long description of the argument.

• bool setInt (int val)

Sets the argument value, for int arguments.

• bool setDouble (double val)

Sets the argument value, for double arguments.

• bool setBool (bool val)

Sets the argument value, for bool arguments.

• bool setPose (ArPose pose)

Sets the argument value, for ArPose (p. 299) arguments.

• bool setString (const char ∗str)
Sets the argument value for ArArgumentBuilder (p. 114) arguments.

• bool setArgWithFunctor (ArArgumentBuilder ∗argument)

Sets the argument by calling the setFunctor callback.

• int getInt (void) const

Gets the argument value, for int arguments.

• double getDouble (void) const

Gets the argument value, for double arguments.

• bool getBool (void) const

Gets the argument value, for bool arguments.

• ArPose getPose (void) const

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.30 ArArg Class Reference 111

Gets the argument value, for pose arguments.

• const char ∗ getString (void) const

Gets the argument value, for string arguments.

• const std::list< ArArgumentBuilder ∗> ∗ getArgsWithFunctor
(void) const

Gets the argument value, which is a list of argumentbuilders here.

• void log (void) const

Logs the type, name, and value of this argument.

• int getMinInt (void) const

Gets the minimum int value.

• int getMaxInt (void) const

Gets the maximum int value.

• double getMinDouble (void) const

Gets the minimum double value.

• double getMaxDouble (void) const

Gets the maximum double value.

Protected Methods

• void clear (void)

Internal helper function.

4.30.1 Detailed Description

Argument class, mostly for actions, could be used for other things.

This is designed to be easy to add another type to the arguments... All you
have to do to do so, is add an enum to the Type enum, add a newType getNew-
Type(void), add a void setNewType(newType nt), and add a case statement for
the newType to ArArg::print. You should probably also add an

See also:
newType to the documentation for ArArg::getType (p. 112).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

112 Aria Class Documentation

4.30.2 Member Enumeration Documentation

4.30.2.1 enum ArArg::Type

Enumeration values:
INVALID An invalid argument, the argument wasn’t created correctly.

INT Integer argument.

DOUBLE Double argument.

STRING String argument.

BOOL Boolean argument.

POSE ArPose (p. 299) argument.

FUNCTOR Argument that handles things with functors.

DESCRIPTION HOLDER Argument that just holds a description.

4.30.3 Constructor & Destructor Documentation

4.30.3.1 ArArg::ArArg (const char ∗ name, ArRetFunctor1< bool,
ArArgumentBuilder ∗> ∗ setFunctor, ArRetFunctor<
const std::list< ArArgumentBuilder ∗> ∗> ∗ getFunctor,
const char ∗ description)

Constructor for making an argument that has functors to handle things.

This constructor is for the functor type of argument, this is for cases that need
to be complicated and have more than one argument per name... such as the
sonar in a config file. Where this data needs to be used to construct internal
data structures.

Parameters:
setFunctor when an argument is read it is passed to this functor which

should set up whatever it needs to from the data

getFunctor since parameter files need to be written too, this get functor
will get a list of strings to be written to the file

4.30.4 Member Function Documentation

4.30.4.1 ArArg::Type ArArg::getType (void) const

Gets the type of the argument.

See also:
INVALID (p. 112) , INT (p. 112) , DOUBLE (p. 112) , BOOL (p. 112)
, POSE (p. 112)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.30 ArArg Class Reference 113

The documentation for this class was generated from the following files:

• ArArg.h
• ArArg.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

114 Aria Class Documentation

4.31 ArArgumentBuilder Class Reference

This class is to build arguments for things that require argc and argv.

#include <ArArgumentBuilder.h>

Public Methods

• ArArgumentBuilder (size t argvLen=512)
Constructor.

• ArArgumentBuilder (const ArArgumentBuilder &builder)
Copy Constructor.

• virtual ∼ArArgumentBuilder ()
Destructor.

• void add (const char ∗str,...)
Adds the given string, with varargs, seperates if there are spaces.

• void addPlain (const char ∗str)
Adds the given string, without varargs (wrapper for java).

• const char ∗ getFullString (void) const
Gets the original string of the input.

• void setFullString (const char ∗str)
Sets the full string (this is so you can have a more raw full string).

• const char ∗ getExtraString (void) const
Gets the extra string of the input, used differently by different things.

• void setExtraString (const char ∗str)
Sets the extra string of the input, used differently by different things.

• void log (void) const
Prints out the arguments.

• size t getArgc (void) const
Gets the argc.

• char ∗∗ getArgv (void) const
Gets the argv.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.31 ArArgumentBuilder Class Reference 115

• const char ∗ getArg (size t whichArg) const
Gets a specific argument.

• bool isArgBool (size t whichArg) const
Sees if an argument is a bool.

• bool getArgBool (size t whichArg) const
Gets the value of an argument as a boolean (check with isArgBool).

• bool isArgInt (size t whichArg) const
Sees if an argument is an int.

• int getArgInt (size t whichArg) const
Gets the value of an argument as an integer (check with isArgInt).

• bool isArgDouble (size t whichArg) const
Sees if an argument is a double.

• double getArgDouble (size t whichArg) const
Gets the value of an argument as a double (check with isArgDouble).

• void removeArg (size t which)
Delete a particular arg, you MUST finish adding before you can remove.

4.31.1 Detailed Description

This class is to build arguments for things that require argc and argv.

The documentation for this class was generated from the following files:

• ArArgumentBuilder.h
• ArArgumentBuilder.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

116 Aria Class Documentation

4.32 ArArgumentParser Class Reference

Class for parsing arguments.

#include <ArArgumentParser.h>

Public Methods

• ArArgumentParser (int ∗argc, char ∗∗argv)

Constructor, takes the argc argv.

• ArArgumentParser (ArArgumentBuilder ∗builder)

Constructor, takes an argument builder.

• ∼ArArgumentParser ()

Destructor.

• bool checkArgument (char ∗argument)

Returns true if the argument was found.

• char ∗ checkParameterArgument (char ∗argument)

Returns the word/argument after given argument or NULL if it is not
present.

• size t getArgc (void) const

Gets how many arguments are left in this parser.

• void log (void) const

Prints out the arguments left in this parser.

4.32.1 Detailed Description

Class for parsing arguments.

This class is made for parsing arguments form an argc/argv set... if you’re using
a winmain you can first toss your string at the ArArgumentBuilder (p. 114)
above class ArArgumentParser and then use this parser on it

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.32 ArArgumentParser Class Reference 117

4.32.2 Constructor & Destructor Documentation

4.32.2.1 ArArgumentParser::ArArgumentParser (int ∗ argc, char
∗∗ argv)

Constructor, takes the argc argv.

Parameters:
argc a pointer to the argc used

argv argv

4.32.2.2 ArArgumentParser::ArArgumentParser
(ArArgumentBuilder ∗ builder)

Constructor, takes an argument builder.

Parameters:
argc a pointer to the argc used

argv argv

4.32.3 Member Function Documentation

4.32.3.1 bool ArArgumentParser::checkArgument (char ∗
argument)

Returns true if the argument was found.

Parameters:
argument the string to check for, if the argument is found its pulled from

the list of arguments

Returns:
true if the argument was found, false otherwise

4.32.3.2 char ∗ ArArgumentParser::checkParameterArgument
(char ∗ argument)

Returns the word/argument after given argument or NULL if it is not present.

Parameters:
argument the string to check for, if the argument is found its pulled from

the list of arguments

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

118 Aria Class Documentation

Returns:
NULL if the argument wasn’t found, the argument after the one given if
the argument was found, or NULL again if the argument was found as the
last item

The documentation for this class was generated from the following files:

• ArArgumentParser.h
• ArArgumentParser.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.33 ArASyncTask Class Reference 119

4.33 ArASyncTask Class Reference

Asynchronous task (runs in its own thread).

#include <ArASyncTask.h>

Inheritance diagram for ArASyncTask::

ArASyncTask

ArThread

ArFunctorASyncTask ArRecurrentTask ArSignalHandler ArSyncLoop

Public Methods

• ArASyncTask ()

Constructor.

• virtual ∼ArASyncTask ()

Destructor.

• virtual void ∗ runThread (void ∗arg)=0

The main run loop.

• virtual void run (void)

Run in this thread.

• virtual void runAsync (void)

Run in its own thread.

• virtual void stopRunning (void)

Stop the thread.

• virtual int create (bool joinable=true, bool lowerPriority=true)

Create the task and start it going.

• virtual void ∗ runInThisThread (void ∗arg=0)

Run the code of the task syncronously.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

120 Aria Class Documentation

4.33.1 Detailed Description

Asynchronous task (runs in its own thread).

The ArAsynTask is a task that runs in its own thread. This is a rather simple
class. The user simply needs to derive their own class from ArAsyncTask and
define the runThread() (p. 120) function. They then need to create an instance
of their task and call run or runAsync. The standard way to stop a task is to call
stopRunning() (p. 119) which sets ArThread::myRunning (p. 515) to false.
In their run loop, they should pay attention to the getRunning() (p. 514) or
the ArThread::myRunning (p. 515) variable. If this value goes to false, the
task should clean up after itself and exit its runThread() (p. 120) function.

4.33.2 Member Function Documentation

4.33.2.1 void ∗ ArASyncTask::runInThisThread (void ∗ arg = 0)
[virtual]

Run the code of the task syncronously.

This will run the code of the ArASyncTask without creating a new thread to
run it in. It performs the needed setup then calls runThread() (p. 120). This
is good if you have a task which you wish to run multiple instances of and you
want to use the main() thread instead of having it block, waiting for exit of the
program.

Parameters:
arg the argument to pass to the runThread() (p. 120)

4.33.2.2 virtual void∗ ArASyncTask::runThread (void ∗ arg) [pure
virtual]

The main run loop.

Override this function and put your taskes run loop here. Check the value of
getRunning() (p. 514) or myRunning periodicly in your loop. If the value goes
false, the loop should exit and runThread() (p. 120) should return.

Reimplemented in ArFunctorASyncTask (p. 180), ArRecurrentTask
(p. 331), and ArSignalHandler (p. 481).

The documentation for this class was generated from the following files:

• ArASyncTask.h
• ArASyncTask.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.34 ArBasePacket Class Reference 121

4.34 ArBasePacket Class Reference

Base packet class.

#include <ArBasePacket.h>

Inheritance diagram for ArBasePacket::

ArBasePacket

ArAMPTUPacket ArDPPTUPacket ArRobotPacket ArSickPacket ArSonyPacket ArVCC4Packet

Public Methods

• ArBasePacket (ArTypes::UByte2 bufferSize=0, ArTypes::UByte2
headerLength=0, char ∗buf=NULL, ArTypes::UByte2 footer-
Length=0)

Constructor.

• virtual ∼ArBasePacket ()
Destructor.

• virtual void empty (void)
resets the length for more data to be added.

• virtual void finalizePacket (void)
MakeFinals the packet in preparation for sending, must be done.

• virtual void log (void)
ArLogs the contents of the packet.

• virtual void printHex (void)
ArLogs the contents of the packet in hex.

• virtual void byteToBuf (ArTypes::Byte val)
Puts ArTypes::Byte (p. 522) into packets buffer.

• virtual void byte2ToBuf (ArTypes::Byte2 val)
Puts ArTypes::Byte2 (p. 522) into packets buffer.

• virtual void byte4ToBuf (ArTypes::Byte4 val)
Puts ArTypes::Byte4 (p. 522) into packets buffer.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

122 Aria Class Documentation

• virtual void uByteToBuf (ArTypes::UByte val)
Puts ArTypes::UByte (p. 522) into packets buffer.

• virtual void uByte2ToBuf (ArTypes::UByte2 val)
Puts ArTypes::UByte2 (p. 522) into packet buffer.

• virtual void uByte4ToBuf (ArTypes::UByte4 val)
Puts ArTypes::UByte (p. 522) 4 into packet buffer.

• virtual void strToBuf (const char ∗str)
Puts a string into packet buffer.

• virtual void strNToBuf (const char ∗str, int length)
Copies length bytes from str into packet buffer.

• virtual void strToBufPadded (const char ∗str, int length)
Copies length bytes from str, if str ends before length, pads data.

• virtual void dataToBuf (const char ∗data, int length)
Copies length bytes from data into packet buffer.

• virtual ArTypes::Byte bufToByte (void)
Gets a ArTypes::Byte (p. 522) from the buffer.

• virtual ArTypes::Byte2 bufToByte2 (void)
Gets a ArTypes::Byte2 (p. 522) from the buffer.

• virtual ArTypes::Byte4 bufToByte4 (void)
Gets a ArTypes::Byte4 (p. 522) from the buffer.

• virtual ArTypes::UByte bufToUByte (void)
Gets a ArTypes::UByte (p. 522) from the buffer.

• virtual ArTypes::UByte2 bufToUByte2 (void)
Gets a ArTypes::UByte2 (p. 522) from the buffer.

• virtual ArTypes::UByte4 bufToUByte4 (void)
Gets a ArTypes::UByte4 (p. 522) from the buffer.

• virtual void bufToStr (char ∗buf, int len)
Gets a string from the buffer.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.34 ArBasePacket Class Reference 123

• virtual void bufToData (char ∗data, int length)
Gets length bytes from buffer and puts them into data.

• virtual void resetRead (void)
Restart the reading process.

• virtual ArTypes::UByte2 getLength (void)
Gets the total length of the packet.

• virtual ArTypes::UByte2 getDataLength (void)
Gets the length of the data in the packet.

• virtual ArTypes::UByte2 getReadLength (void)
Gets how far into the packet that has been read.

• virtual ArTypes::UByte2 getDataReadLength (void)
Gets how far into the data of the packet that has been read.

• virtual ArTypes::UByte2 getHeaderLength (void)
Gets the length of the header.

• virtual ArTypes::UByte2 getFooterLength (void)
Gets the length of the header.

• virtual ArTypes::UByte2 getMaxLength (void)
Gets the maximum length packet.

• virtual const char ∗ getBuf (void)
Gets a pointer to the buffer the packet uses.

• virtual void setBuf (char ∗buf)
Sets the buffer the packet is using.

• virtual bool setLength (ArTypes::UByte2 length)
Sets the length of the packet.

• virtual void setReadLength (ArTypes::UByte2 readLength)
Sets the read length.

• virtual bool setHeaderLength (ArTypes::UByte2 length)
Sets the length of the header.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

124 Aria Class Documentation

• virtual void duplicatePacket (ArBasePacket ∗packet)
Makes this packet a duplicate of another packet.

4.34.1 Detailed Description

Base packet class.

This class is a base class for all packets... most software will never need to use
this class, it is there mostly to help people do more advanced client and server
communications.

All of the functions are virtual so it can be completely overridden if desired...
but the few most likely ones to be overridden are empty and makeFinal...

The theory of the packet works like this, the packet has a buffer, headerLength,
footer length, readLength, length, and a maxLength. When the packet is ini-
tialized it is given a buffer and its maxLength. All of the functions that are
somethingToBuf put data in at the current length of the packet, and advance
the length. All of the functions that do bufToSomething get the data from where
readLength points, and advance read length. If bufToSomething would go be-
yond the data length of the packet it returns a 0 (note that this includes if it goes
into the footer length). resetRead sets readLength back to the header (since no
one outside of the person who writes the class should touch the header). empty
likewise sets the length back to the header since the header will be calculated
in the finalizePacket method.

The base class and most classes of this kind will have an integer before the
string, denoting the strings length... this is hidden by the function calls, but
something someone may want to be aware of... it should not matter much as
this same packet class should be used on both sides.

Uses of this class that don’t get newed and deleted a lot can just go ahead and
use the constructor with buf = NULL, as this will have the packet manage its
own memory, making life easier.

4.34.2 Constructor & Destructor Documentation

4.34.2.1 ArBasePacket::ArBasePacket (ArTypes::UByte2
bufferSize = 0, ArTypes::UByte2 headerLength = 0, char
∗ buf = NULL, ArTypes::UByte2 footerLength = 0)

Constructor.

Parameters:
bufferSize size of the buffer

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.34 ArBasePacket Class Reference 125

headerLength length of the header

buf buffer packet uses, if NULL, instance will allocate memory

4.34.3 Member Function Documentation

4.34.3.1 void ArBasePacket::bufToData (char ∗ data, int length)
[virtual]

Gets length bytes from buffer and puts them into data.

copies length bytes from the buffer into data, length is passed in, not read from
packet

Parameters:
data character array to copy the data into

length number of bytes to copy into data

4.34.3.2 void ArBasePacket::bufToStr (char ∗ buf, int len)
[virtual]

Gets a string from the buffer.

puts a string from the packets buffer into the given buffer, stopping when it
reaches the end of the packets buffer or the length of the given buffer or a ’\0’

4.34.3.3 void ArBasePacket::dataToBuf (const char ∗ data, int
length) [virtual]

Copies length bytes from data into packet buffer.

puts data into the buffer without putting in length first

Parameters:
data chacter array to copy into buffer

legnth how many botes to copy from data into packet

4.34.3.4 void ArBasePacket::duplicatePacket (ArBasePacket ∗
packet) [virtual]

Makes this packet a duplicate of another packet.

Copies the given packets buffer into the buffer of this packet, also sets this length
and readlength to what the given packet has

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

126 Aria Class Documentation

Parameters:
packet the packet to duplicate

4.34.3.5 void ArBasePacket::empty (void) [virtual]

resets the length for more data to be added.

Sets the packet length back to be the packets header length again

4.34.3.6 void ArBasePacket::resetRead (void) [virtual]

Restart the reading process.

Sets the length read back to the header length so the packet can be reread using
the other methods

Reimplemented in ArSickPacket (p. 473).

4.34.3.7 void ArBasePacket::strNToBuf (const char ∗ str, int
length) [virtual]

Copies length bytes from str into packet buffer.

first puts the length of the string into the buffer, then puts in string

Parameters:
str character array to copy into buffer
length how many bytes to copy from the str into packet

4.34.3.8 void ArBasePacket::strToBuf (const char ∗ str) [virtual]

Puts a string into packet buffer.

first puts the length of the string into the buffer, then puts in string

Parameters:
str string to copy into buffer

4.34.3.9 void ArBasePacket::strToBufPadded (const char ∗ str, int
length) [virtual]

Copies length bytes from str, if str ends before length, pads data.

first puts the length of the string into the buffer, then puts in string, if string
ends before length it pads the string

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.34 ArBasePacket Class Reference 127

Parameters:
str character array to copy into buffer

length how many bytes to copy from the str into packet

The documentation for this class was generated from the following files:

• ArBasePacket.h
• ArBasePacket.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

128 Aria Class Documentation

4.35 ArCommands Class Reference

A class with an enum of the commands that can be sent to the robot.

#include <ArCommands.h>

Public Types

• enum Commands { PULSE = 0, OPEN = 1, CLOSE = 2,
POLLING = 3, ENABLE = 4, SETA = 5, SETV = 6, SETO = 7,
MOVE = 8, ROTATE = 9, SETRV = 10, VEL = 11, HEAD = 12,
DHEAD = 13, SAY = 15, CONFIG = 18, ENCODER = 19, RVEL
= 21, DCHEAD = 22, SETRA = 23, SONAR = 28, STOP = 29,
DIGOUT = 30, VEL2 = 32, GRIPPER = 33, ADSEL = 35, GRIP-
PERVAL = 36, GRIPPERPACREQUEST = 37, IOREQUEST =
40, PTUPOS = 41, TTY2 = 42, GETAUX = 43, BUMPSTALL =
44, TCM2 = 45, JOYDRIVE = 47, ESTOP = 55 , LOADPARAM =
61, ENDSIM = 62, LOADWORLD = 63, STEP = 64, CALCOMP
= 65, SETSIMORIGINX = 66, SETSIMORIGINY = 67, SETSI-
MORIGINTH = 68, RESETSIMTOORIGIN = 69, SOUND = 90,
PLAYLIST = 91, SOUNDTOG = 92 }

4.35.1 Detailed Description

A class with an enum of the commands that can be sent to the robot.

A class with an enum of the commands that can be sent to the robot, see the
operations manual for more detailed descriptions.

4.35.2 Member Enumeration Documentation

4.35.2.1 enum ArCommands::Commands

Enumeration values:
PULSE none, keep alive command, so watchdog doesn’t trigger.

OPEN none, sent after connection to initiate connection.

CLOSE none, sent to close the connection to the robot.

POLLING string, string that sets sonar polling sequence.

ENABLE int, enable (1) or disable (0) motors.

SETA int, sets translational accel (+) or decel (-) (mm/sec/sec).

SETV int, sets maximum velocity (mm/sec).

SETO int, resets robots origin back to 0, 0, 0.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.35 ArCommands Class Reference 129

MOVE int, translational move (mm).

ROTATE int, set rotational velocity, duplicate of RVEL (deg/sec).

SETRV int, sets the maximum rotational velocity (deg/sec).

VEL int, set the translational velocity (mm/sec).

HEAD int, turn to absolute heading 0-359 (degrees).

DHEAD int, turn relative to current heading (degrees).

SAY string, makes the robot beep. up to 20 pairs of duration (20 ms
incrs) and tones (halfcycle)

CONFIG int, request configuration packet.

ENCODER int, > 0 to request continous stream of packets, 0 to stop.

RVEL int, set rotational velocity (deg/sec).

DCHEAD int, colbert relative heading setpoint (degrees).

SETRA int, sets rotational accel(+) or decel(-) (deg/sec).

SONAR int, enable (1) or disable (0) sonar.

STOP int, stops the robot.

DIGOUT int, sets the digout lines.

VEL2 2bytes, independent wheel velocities, first byte = right, second =
left

GRIPPER int, gripper server command, see gripper manual for detail.

ADSEL int, select the port given as argument.

GRIPPERVAL p2 gripper server value, see gripper manual for details.

GRIPPERPACREQUEST p2 gripper packet request.

IOREQUEST request iopackets from p2os.

PTUPOS most-sig byte is port number, least-sig byte is pulse width.

TTY2 string, send string argument to serial dev connected to aux1.

GETAUX int, requests 1-200 bytes from aux1 serial channel, 0 flush.

BUMPSTALL int, stop and register a stall if front (1), rear (2), or both
(3) bump rings are triggered, Off (default) is 0

TCM2 TCM2 module commands, see p2 tcm2 manual for details.

JOYDRIVE Command to tell p2os to drive with the joystick plugged
into the robot

ESTOP none, emergency stop, overrides decel.

LOADPARAM string, Sim Specific, causes the sim to load the given
param file.

ENDSIM none, Sim Specific, causes the simulator to close and exit.

LOADWORLD string, Sim Specific, causes the sim to load given world.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

130 Aria Class Documentation

STEP none, Sim Specific, single step mode.

CALCOMP int, commands for calibrating compass, see compass man-
ual.

SETSIMORIGINX int, sets the X origin in the simulator.

SETSIMORIGINY int, sets the Y origin in the simulator.

SETSIMORIGINTH int, sets the heading at origin in the simulator.

RESETSIMTOORIGIN int, resets the sim robots poseiton to origin.

SOUND int, AmigoBot specific, plays sound with given number.

PLAYLIST int, AmigoBot specific, requests name of sound, 0 for all,
otherwise for specific sound

SOUNDTOG int, AmigoBot specific, enable(1) or diable(0) sound.

The documentation for this class was generated from the following file:

• ArCommands.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.36 ArCondition Class Reference 131

4.36 ArCondition Class Reference

Threading condition wrapper class.

#include <ArCondition.h>

Public Types

• enum typedef { STATUS FAILED = 1, STATUS FAILED -
DESTROY, STATUS FAILED INIT, STATUS WAIT -
TIMEDOUT, STATUS WAIT INTR, STATUS MUTEX -
FAILED INIT, STATUS MUTEX FAILED }

Public Methods

• ArCondition ()

Constructor.

• virtual ∼ArCondition ()

Desctructor.

• int signal ()

Signal the thread waiting.

• int broadcast ()

Broadcast a signal to all threads waiting.

• int wait ()

Wait for a signal.

• int timedWait (unsigned int msecs)

Wait for a signal for a period of time in milliseconds.

• const char ∗ getError (int messageNumber) const

Translate error into string.

4.36.1 Detailed Description

Threading condition wrapper class.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

132 Aria Class Documentation

4.36.2 Member Enumeration Documentation

4.36.2.1 enum ArCondition::typedef

Enumeration values:
STATUS FAILED General failure.

STATUS FAILED DESTROY Another thread is waiting on this con-
dition so it can not be destroyed.

STATUS FAILED INIT Failed to initialize thread. Requested action
is imposesible.

STATUS WAIT TIMEDOUT The timedwait timed out before sig-
naling.

STATUS WAIT INTR The wait was interupted by a signal.

STATUS MUTEX FAILED INIT The underlying mutex failed to
init.

STATUS MUTEX FAILED The underlying mutex failed in some
fashion.

The documentation for this class was generated from the following files:

• ArCondition.h
• ArCondition LIN.cpp
• ArCondition WIN.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.37 ArConfig Class Reference 133

4.37 ArConfig Class Reference

Classes dealing with config files can inherit from this one.

#include <ArConfig.h>

Inheritance diagram for ArConfig::

ArConfig

ArRobotParams

ArRobotAmigo

ArRobotGeneric

ArRobotMapper

ArRobotP2AT

ArRobotP2AT8

ArRobotP2AT8Plus

ArRobotP2CE

ArRobotP2D8

ArRobotP2D8Plus

ArRobotP2DF

ArRobotP2DX

ArRobotP2DXe

ArRobotP2IT

ArRobotP2PB

ArRobotP2PP

ArRobotP3AT

ArRobotP3DX

ArRobotPerfPB

ArRobotPerfPBPlus

ArRobotPion1M

ArRobotPion1X

ArRobotPionAT

ArRobotPowerBot

ArRobotPsos1M

ArRobotPsos1X

ArRobotPsos43M

Public Methods

• ArConfig (const char ∗baseDirectory=NULL, bool noBlanksBetween-
Params=false)

Constructor.

• virtual ∼ArConfig ()

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

134 Aria Class Documentation

Destructor.

• bool parseFile (const char ∗filename, bool continueOnError=false, bool
noFileNotFoundMessage=false)

Parse a config file.

• bool writeFile (const char ∗filename, bool append=false, std::set<
std::string > ∗alreadyWritten=NULL)

Write out a config file with defaults.

• virtual bool processFile (void)
Process file, this should be overloaded and is called after parsing.

• bool parseArgument (ArArgumentBuilder ∗arg)
This parses the argument given (for parser or other use).

• const char ∗ getBaseDirectory (void) const
Gets the base directory.

• void setBaseDirectory (const char ∗baseDirectory)
Sets the base directory.

Protected Methods

• bool addParam (ArArg const &arg)
Command to set the next parameter (for inheritors).

• bool addComment (const char ∗comment)
Command to add a new comment (NULL or empty string will be a blank
line).

4.37.1 Detailed Description

Classes dealing with config files can inherit from this one.

4.37.2 Member Function Documentation

4.37.2.1 bool ArConfig::parseArgument (ArArgumentBuilder ∗
arg)

This parses the argument given (for parser or other use).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.37 ArConfig Class Reference 135

The extra string of the parser should be set to the command wanted, while the
rest of the arg should be the arguments to the command. Its case insensitive.

4.37.2.2 virtual bool ArConfig::processFile (void) [inline,
virtual]

Process file, this should be overloaded and is called after parsing.

This function is called after parseFile is called... if there were no errors parsing
the file or continueOnError was set to false when parseFile was called

Returns:
true if the config parsed was good (parseFile will return true) false if the
config parsed wasn’t (parseFile will return false)

4.37.2.3 bool ArConfig::writeFile (const char ∗ filename, bool
append = false, std::set< std::string > ∗ alreadyWritten =
NULL)

Write out a config file with defaults.

Parameters:
filename the filename to write out

append if true then it’ll append, otherwise it’ll overwrite

alreadyWritten a list of strings that have already been written out, don’t
write again if its in this list... when you write something put it into
this list (if its not NULL)

The documentation for this class was generated from the following files:

• ArConfig.h
• ArConfig.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

136 Aria Class Documentation

4.38 ArConfigGroup Class Reference

Container for holding a group of ArConfigs.

#include <ArConfigGroup.h>

Public Methods

• ArConfigGroup (const char ∗baseDirectory=NULL)
Constructor.

• ∼ArConfigGroup (void)
Destructor.

• void addConfig (ArConfig ∗config)
Adds a config to the group.

• void remConfig (ArConfig ∗config)
Removes a config from the group.

• bool parseFile (const char ∗filename, bool continueOnError=false)
Parses the given file (starting from the base directory).

• bool reloadFile (bool continueOnError=true)
Reloads the last file parsed.

• bool writeFile (const char ∗filename)
Writes a file out (overwrites any existing file).

• void setBaseDirectory (const char ∗baseDirectory)
Sets the base directory on all configs this contains.

• const char ∗ getBaseDirectory (void) const
Gets the baes directory of this group (not the configs it contains).

4.38.1 Detailed Description

Container for holding a group of ArConfigs.

The documentation for this class was generated from the following files:

• ArConfigGroup.h
• ArConfigGroup.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.39 ArDeviceConnection Class Reference 137

4.39 ArDeviceConnection Class Reference

Base class for device connections.

#include <ArDeviceConnection.h>

Inheritance diagram for ArDeviceConnection::

ArDeviceConnection

ArLogFileConnection ArSerialConnection ArTcpConnection

Public Types

• enum Status { STATUS NEVER OPENED = 1, STATUS OPEN,
STATUS OPEN FAILED, STATUS CLOSED NORMALLY,
STATUS CLOSED ERROR }

Public Methods

• ArDeviceConnection ()
constructor.

• virtual ∼ArDeviceConnection ()
destructor also forces a close on the connection.

• virtual int read (const char ∗data, unsigned int size, unsigned int ms-
Wait=0)=0

Reads data from connection.

• virtual int writePacket (ArBasePacket ∗packet)
Writes data to connection.

• virtual int write (const char ∗data, unsigned int size)=0
Writes data to connection.

• virtual int getStatus (void)=0
Gets the status of the connection, which is one of the enum status.

• const char ∗ getStatusMessage (int messageNumber) const
Gets the description string associated with the status.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

138 Aria Class Documentation

• virtual bool openSimple (void)=0

Opens the connection again, using the values from setLocation or.

• virtual bool close (void)

Closes the connection.

• virtual const char ∗ getOpenMessage (int messageNumber)=0

Gets the string of the message associated with opening the device.

• virtual ArTime getTimeRead (int index)=0

Gets the time data was read in.

• virtual bool isTimeStamping (void)=0

sees if timestamping is really going on or not.

4.39.1 Detailed Description

Base class for device connections.

Base class for device connections, this is mostly for connections to the robot or
simulator but could also be used for a connection to a laser or other device

Note that this is mostly a base class, so if you’ll want to use one of the classes
which inherit from this one... also note that in those classes is where you’ll
find setPort which sets the place the device connection will try to connect to...
the inherited classes also have an open which returns more detailed information
about the open attempt, and which takes the parameters for where to connect

4.39.2 Member Enumeration Documentation

4.39.2.1 enum ArDeviceConnection::Status

Enumeration values:
STATUS NEVER OPENED Never opened.

STATUS OPEN Currently open.

STATUS OPEN FAILED Tried to open, but failed.

STATUS CLOSED NORMALLY Closed by a close call.

STATUS CLOSED ERROR Closed because of error.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.39 ArDeviceConnection Class Reference 139

4.39.3 Member Function Documentation

4.39.3.1 virtual bool ArDeviceConnection::close (void) [inline,
virtual]

Closes the connection.

Returns:
whether the close succeeded or not

Reimplemented in ArLogFileConnection (p. 250), ArSerialConnection
(p. 446), and ArTcpConnection (p. 509).

4.39.3.2 virtual const char∗ ArDeviceConnection::getOpenMessage
(int messageNumber) [pure virtual]

Gets the string of the message associated with opening the device.

Each class inherited from this one has an open method which returns 0 for
success or an integer which can be passed into this function to obtain a string
describing the reason for failure

Parameters:
messageNumber the number returned from the open

Returns:
the error description associated with the messageNumber

Reimplemented in ArLogFileConnection (p. 251), ArSerialConnection
(p. 447), and ArTcpConnection (p. 509).

4.39.3.3 virtual int ArDeviceConnection::getStatus (void) [pure
virtual]

Gets the status of the connection, which is one of the enum status.

Gets the status of the connection, which is one of the enum status. If you want
to get a string to go along with the number, use getStatusMessage

Returns:
the status of the connection

See also:
getStatusMessage (p. 140)

Reimplemented in ArLogFileConnection (p. 251), ArSerialConnection
(p. 447), and ArTcpConnection (p. 510).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

140 Aria Class Documentation

4.39.3.4 const char ∗ ArDeviceConnection::getStatusMessage (int
messageNumber) const

Gets the description string associated with the status.

Parameters:
messageNumber the int from getStatus you want the string for

Returns:
the description associated with the status

See also:
getStatus (p. 139)

4.39.3.5 virtual ArTime ArDeviceConnection::getTimeRead (int
index) [pure virtual]

Gets the time data was read in.

Parameters:
index looks like this is the index back in the number of bytes last read in

Returns:
the time the last read data was read in

Reimplemented in ArLogFileConnection (p. 251), ArSerialConnection
(p. 447), and ArTcpConnection (p. 510).

4.39.3.6 virtual bool ArDeviceConnection::isTimeStamping (void)
[pure virtual]

sees if timestamping is really going on or not.

Returns:
true if real timestamping is happening, false otherwise

Reimplemented in ArLogFileConnection (p. 252), ArSerialConnection
(p. 448), and ArTcpConnection (p. 510).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.39 ArDeviceConnection Class Reference 141

4.39.3.7 virtual int ArDeviceConnection::read (const char ∗ data,
unsigned int size, unsigned int msWait = 0) [pure
virtual]

Reads data from connection.

Reads data from connection

Parameters:
data pointer to a character array to read the data into

size maximum number of bytes to read

msWait read blocks for this many milliseconds (not at all for < 0)

Returns:
number of bytes read, or -1 for failure

See also:
write (p. 141), writePacket (p. 142)

Reimplemented in ArLogFileConnection (p. 252), ArSerialConnection
(p. 448), and ArTcpConnection (p. 511).

4.39.3.8 virtual int ArDeviceConnection::write (const char ∗ data,
unsigned int size) [pure virtual]

Writes data to connection.

Writes data to connection

Parameters:
data pointer to a character array to write the data from

size number of bytes to write

Returns:
number of bytes read, or -1 for failure

See also:
read (p. 141), writePacket (p. 142)

Reimplemented in ArLogFileConnection (p. 253), ArSerialConnection
(p. 450), and ArTcpConnection (p. 512).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

142 Aria Class Documentation

4.39.3.9 virtual int ArDeviceConnection::writePacket
(ArBasePacket ∗ packet) [inline, virtual]

Writes data to connection.

Writes data to connection from a packet

Parameters:
packet pointer to a packet to write the data from

Returns:
number of bytes written, or -1 for failure

See also:
read (p. 141), write (p. 141)

The documentation for this class was generated from the following files:

• ArDeviceConnection.h
• ArDeviceConnection.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.40 ArDPPTU Class Reference 143

4.40 ArDPPTU Class Reference

Driver for the DPPTU.

#include <ArDPPTU.h>

Inheritance diagram for ArDPPTU::

ArDPPTU

ArPTZ

Public Types

• enum { , MIN PAN = -158, MAX TILT = 30, MIN TILT = -46,
MAX PAN SLEW = 149, MIN PAN SLEW = 2, MAX TILT -
SLEW = 149, MIN TILT SLEW = 2, MAX PAN ACCEL = 102,
MIN PAN ACCEL = 2, MAX TILT ACCEL = 102, MIN TILT -
ACCEL = 2 }

Public Methods

• ArDPPTU (ArRobot ∗robot)
Constructor.

• virtual ∼ArDPPTU ()
Destructor.

• bool init (void)
Initializes the camera.

• bool canZoom (void) const
Returns true if camera can zoom (or rather, if it is controlled by this).

• bool blank (void)
Sends a delimiter only.

• bool resetCalib (void)
Perform reset calibration.

• bool disableReset (void)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

144 Aria Class Documentation

Disable power-on reset.

• bool resetTilt (void)

Reset tilt axis.

• bool resetPan (void)

Reset pan axis only.

• bool resetAll (void)

Reset pan and tilt axes on power-on.

• bool saveSet (void)

Save current settings as defaults.

• bool restoreSet (void)

Restore stored defaults.

• bool factorySet (void)

Restore factory defaults.

• bool panTilt (int pdeg, int tdeg)

Pans and tilts to the given degrees.

• bool pan (int deg)

Pans to the given degrees.

• bool panRel (int deg)

Pans relative to current position by given degrees.

• bool tilt (int deg)

Tilts to the given degrees.

• bool tiltRel (int deg)

Tilts relative to the current position by given degrees.

• bool panTiltRel (int pdeg, int tdeg)

Pans and tilts relatives to the current position by the given degrees.

• bool limitEnforce (bool val)

Enables or disables the position limit enforcement.

• bool immedExec (void)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.40 ArDPPTU Class Reference 145

Sets unit to immediate-execution mode for positional commands.

• bool slaveExec (void)

Sets unit to slaved-execution mode for positional commands.

• bool awaitExec (void)

Instructs unit to await completion of the last issued command.

• bool haltAll (void)

Halts all pan-tilt movement.

• bool haltPan (void)

Halts pan axis movement.

• bool haltTilt (void)

Halts tilt axis movement.

• virtual int getMaxPosPan (void) const

Gets the highest positive degree the camera can pan to.

• virtual int getMaxNegPan (void) const

Gets the lowest negative degree the camera can pan to.

• virtual int getMaxPosTilt (void) const

Gets the highest positive degree the camera can tilt to.

• virtual int getMaxNegTilt (void) const

Gets the lowest negative degree the camera can tilt to.

• bool initMon (int deg1, int deg2, int deg3, int deg4)

Sets monitor mode - pan pos1/pos2, tilt pos1/pos2.

• bool enMon (void)

Enables monitor mode at power up.

• bool disMon (void)

Disables monitor mode at power up.

• bool offStatPower (void)

Sets stationary power mode to off.

• bool regStatPower (void)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

146 Aria Class Documentation

Sets regular stationary power mode.

• bool lowStatPower (void)

Sets low stationary power mode.

• bool highMotPower (void)

Sets high in-motion power mode.

• bool regMotPower (void)

Sets regular in-motion power mode.

• bool lowMotPower (void)

Sets low in-motion power mode.

• bool panAccel (int deg)

Sets acceleration for pan axis.

• bool tiltAccel (int deg)

Sets acceleration for tilt axis.

• bool basePanSlew (int deg)

Sets the start-up pan slew.

• bool baseTiltSlew (int deg)

Sets the start-up tilt slew.

• bool upperPanSlew (int deg)

Sets the upper pan slew.

• bool lowerPanSlew (int deg)

Sets the lower pan slew.

• bool upperTiltSlew (int deg)

Sets the upper tilt slew.

• bool lowerTiltSlew (int deg)

Sets the lower pan slew.

• bool indepMove (void)

Sets motion to indenpendent control mode.

• bool velMove (void)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.40 ArDPPTU Class Reference 147

Sets motion to pure velocity control mode.

• bool panSlew (int deg)
Sets the rate that the unit pans at.

• bool tiltSlew (int deg)
Sets the rate the unit tilts at.

• bool panSlewRel (int deg)
Sets the rate that the unit pans at, relative to current slew.

• bool tiltSlewRel (int deg)
Sets the rate the unit tilts at, relative to current slew.

• virtual int getPan (void) const
The angle the camera was last told to pan to.

• virtual int getTilt (void) const
The angle the camera was last told to tilt to.

• int getPanSlew (void)
Gets the current pan slew.

• int getTiltSlew (void)
Gets the current tilt slew.

• int getBasePanSlew (void)
Gets the base pan slew.

• int getBaseTiltSlew (void)
Gets the base tilt slew.

• int getPanAccel (void)
Gets the current pan acceleration rate.

• int getTiltAccel (void)
Gets the current tilt acceleration rate.

Protected Attributes

• int myPan
adds on extra delim in front to work on H8.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

148 Aria Class Documentation

4.40.1 Detailed Description

Driver for the DPPTU.

4.40.2 Member Enumeration Documentation

4.40.2.1 anonymous enum

Enumeration values:
MIN PAN Maximum pan range of 3090 positions.

MAX TILT Minimum pan range of -3090 positions.

MIN TILT Maximum tilt range of 600 positions.

MAX PAN SLEW Minimum tilt range of -900 positions.

MIN PAN SLEW Maximum pan slew of 2902 positions/sec.

MAX TILT SLEW Minimum tilt slew of 31 positions/sec.

MIN TILT SLEW Maximum tilt slew of 2902 positions/sec.

MAX PAN ACCEL Minimum tilt slew of 31 positions/sec.

MIN PAN ACCEL Maximum pan acceleration of 2000
positions/sec∧2.

MAX TILT ACCEL Minimum pan acceleration of 0 positions/sec∧2.

MIN TILT ACCEL Maximum tilt acceleration of 2000
positions/sec∧2.

4.40.3 Member Function Documentation

4.40.3.1 bool ArDPPTU::blank (void)

Sends a delimiter only.

A blank packet can be sent to exit monitor mode ∗

The documentation for this class was generated from the following files:

• ArDPPTU.h
• ArDPPTU.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.41 ArDPPTUCommands Class Reference 149

4.41 ArDPPTUCommands Class Reference

A class with the commands for the DPPTU.

#include <ArDPPTU.h>

Public Types

• enum {DELIM = 0x20, INIT = 0x40, ACCEL = 0x61, BASE = 0x62,
CONTROL = 0x63, DISABLE = 0x64, ENABLE = 0x65, FAC-
TORY = 0x66, HALT = 0x68, IMMED = 0x69, LIMIT = 0x6C,
MONITOR = 0x6D, OFFSET = 0x6F, PAN = 0x70, RESET =
0x72, SPEED = 0x73, TILT = 0x74, UPPER = 0x75, VELOCITY
= 0x76 }

4.41.1 Detailed Description

A class with the commands for the DPPTU.

This class is for controlling the Directed Perceptions Pan-Tilt Unit

Note that there are far too many functions enabled in here, most of which are
extraneous. The important ones are defined in the ArPTZ (p. 305) class and
include the basic pan, tilt commands.

The DPPTU’s pan and tilt commands work on a number of units equal to
(degrees / 0.514). The panTilt function always rounds the conversion closer to
zero, so that a magnitude greater than the allowable range of movement is not
sent to the camera.

4.41.2 Member Enumeration Documentation

4.41.2.1 anonymous enum

Enumeration values:
DELIM Space - Carriage return delimeter.

INIT Init character.

ACCEL Acceleration, Await position-command completion.

BASE Base speed.

CONTROL Speed control.

DISABLE Disable character, Delta, Default.

ENABLE Enable character, Echoing.

FACTORY Restore factory defaults.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

150 Aria Class Documentation

HALT Halt, Hold, High.

IMMED Immediate position-command execution mode, Independent
control mode.

LIMIT Position limit character, Low.

MONITOR Monitor, In-motion power mode.

OFFSET Offset position, Off.

PAN Pan.

RESET Reset calibration, Restore stored defaults, Regular.

SPEED Speed, Slave.

TILT Tilt.

UPPER Upper speed limit.

VELOCITY Velocity control mode.

The documentation for this class was generated from the following file:

• ArDPPTU.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.42 ArDPPTUPacket Class Reference 151

4.42 ArDPPTUPacket Class Reference

A class for for making commands to send to the DPPTU.

#include <ArDPPTU.h>

Inheritance diagram for ArDPPTUPacket::

ArDPPTUPacket

ArBasePacket

Public Methods

• ArDPPTUPacket (ArTypes::UByte2 bufferSize=30)
Constructor.

• virtual ∼ArDPPTUPacket ()
Destructor.

• virtual void finalizePacket (void)
MakeFinals the packet in preparation for sending, must be done.

4.42.1 Detailed Description

A class for for making commands to send to the DPPTU.

There are only a few functioning ways to put things into this packet, you MUST
use these, if you use anything else your commands won’t work. You must use
byteToBuf and byte2ToBuf.

The documentation for this class was generated from the following files:

• ArDPPTU.h
• ArDPPTU.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

152 Aria Class Documentation

4.43 ArFileParser Class Reference

Class for parsing files more easily.

#include <ArFileParser.h>

Public Methods

• ArFileParser (const char ∗baseDirectory=NULL)

Constructor.

• ∼ArFileParser (void)

Destructor.

• bool addHandler (const char ∗keyword, ArRetFunctor1< bool, Ar-
ArgumentBuilder ∗> ∗functor)

Adds a functor to handle a keyword that wants an easily parsable string.

• bool remHandler (const char ∗keyword)

Removes a handler for a keyword.

• bool remHandler (ArRetFunctor1< bool, ArArgumentBuilder ∗>
∗functor)

Removes any handlers with this functor.

• ArRetFunctor1< bool, ArArgumentBuilder ∗> ∗ getHandler
(const char ∗keyword)

Gets handler data for some keyword.

• bool parseFile (const char ∗fileName, bool continueOnErrors=true, bool
noFileNotFoundMessage=false)

The function to parse a file.

• const char ∗ getBaseDirectory (void) const

Gets the base directory.

• void setBaseDirectory (const char ∗baseDirectory)

Sets the base directory.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.43 ArFileParser Class Reference 153

4.43.1 Detailed Description

Class for parsing files more easily.

This class is set up so that you can parse a file more easily... basically you add
a bunch of functors of different types of arguments with addHandler then call
parseFile to parse the file, parseFile returns true if there were no errors parsing
and false if there were errors.

One side feature is that you can have ONE handler for the keyword NULL, and
if there is a line read that isn’t entirely comments or whitespace that handler
will be given the line. There isn’t an explicit set for them since then there’d be
another set of 5 adds.

There should be some whitespace after keywords in the file, and any semicolon
(;) will act as a comment with the rest of the line ignored. If no handler exists for
the first word the line is passed to the handler above for NULL. You can’t have
any lines longer than 10000 characters or keywords longer than 512 characters
(though I don’t know why you’d have either). If you have more than 2048 words
on a line you’ll have problems as well.

The documentation for this class was generated from the following files:

• ArFileParser.h
• ArFileParser.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

154 Aria Class Documentation

4.44 ArFunctor Class Reference

Base class for functors.

#include <ArFunctor.h>

Inheritance diagram for ArFunctor::

ArFunctor

ArFunctor1 ArFunctorC ArGlobalFunctor ArRetFunctor

ArFunctor1C

ArFunctor2

ArGlobalFunctor1

ArGlobalRetFunctor

ArRetFunctor1

ArRetFunctor2

ArRetFunctor3

ArRetFunctorC

Public Methods

• virtual ∼ArFunctor ()
Destructor.

• virtual void invoke (void)=0
Invokes the functor.

4.44.1 Detailed Description

Base class for functors.

Functors are meant to encapsulate the idea of a pointer to a function which is a
member of a class. To use a pointer to a member function, you must have a C
style function pointer, ’void(Class::∗)()’, and a pointer to an instance of the class
in which the function is a member of. This is because all non-static member
functions must have a ’this’ pointer. If they dont and if the member function
uses any member data or even other member functions it will not work right
and most likely crash. This is because the ’this’ pointer is not the correct value
and is most likely a random uninitialized value. The virtue of static member

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.44 ArFunctor Class Reference 155

functions is that they do not require a ’this’ pointer to be run. But the compiler
will never let you access any member data or functions from within a static
member function.

Because of the design of C++ never allowed for encapsulating these two pointers
together into one language supported construct, this has to be done by hand. For
conviences sake, there are functors (ArGlobalFunctor (p. 184), ArGlobal-
RetFunctor (p. 198)) which take a pure C style function pointer (a non-member
function). This is in case you want to use a functor that refers to a global C
style function.

Aria (p. 221) makes use of functors by using them as callback functions. Since
Aria (p. 221) is programmed using the object oriented programming paradigm,
all the callback functions need to be tied to an object and a particular instance.
Thus the need for functors. Most of the use of callbacks simply take an Ar-
Functor, which is the base class for all the functors. This class only has the
ability to invoke a functor. All the derivitave functors have the ability to invoke
the correct function on the correct object.

Because functions have different signatures because they take different types of
parameters and have different number of parameters, templates were used to
create the functors. These are the base classes for the functors. These classes
encapsulate everything except for the class type that the member function is
a member of. This allows someone to accept a functor of type ArFunctor1
(p. 157)<int> which has one parameter of type ’int’. But they never have to
know that the function is a member function of class ’SomeUnknownType’.
These classes are:

ArFunctor, ArFunctor1 (p. 157), ArFunctor2 (p. 163), ArFunctor3 (p. 170)
ArRetFunctor (p. 334), ArRetFunctor1 (p. 335), ArRetFunctor2 (p. 341),
ArRetFunctor3 (p. 349)

These 8 functors are the only thing a piece of code that wants a functor will
ever need. But these classes are abstract classes and can not be instantiated.
On the other side, the piece of code that wants to be called back will need the
functor classes that know about the class type. These functors are:

ArFunctorC (p. 181), ArFunctor1C (p. 159), ArFunctor2C (p. 165), Ar-
Functor3C (p. 173) ArRetFunctorC (p. 359), ArRetFunctor1C (p. 337),
ArRetFunctor2C (p. 343), ArRetFunctor3C (p. 352)

These functors are meant to be instantiated and passed of to a piece of code
that wants to use them. That piece of code should only know the functor as
one of the functor classes without the ’C’ in it.

Note that you can create these FunctorC instances with default arguments that
are then used when the invoke is called without those arguments... These are
quite useful since if you have a class that expects an ArFunctor you can make an
ArFunctor1C (p. 159) with default arguments and pass it as an ArFunctor...
and it will get called with that default argument, this is useful for having mul-

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

156 Aria Class Documentation

tiple functors use the same function with different arguments and results (just
takes one functor each). You can see an example of this in the tests/functor-
Test.cpp example (in testBase for example).

See the example functor.cpp for a simple example of using functors.

See the test program functortest.cpp for the full use of all the functors.

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.45 ArFunctor1 Class Template Reference 157

4.45 ArFunctor1 Class Template Reference

Base class for functors with 1 parameter.

#include <ArFunctor.h>

Inheritance diagram for ArFunctor1::

ArFunctor1

ArFunctor

ArFunctor1C ArFunctor2 ArGlobalFunctor1

ArFunctor2C ArFunctor3 ArGlobalFunctor2

ArFunctor3C ArGlobalFunctor3

Public Methods

• virtual ∼ArFunctor1 ()
Destructor.

• virtual void invoke (void)=0
Invokes the functor.

• virtual void invoke (P1 p1)=0
Invokes the functor.

4.45.1 Detailed Description

template<class P1> class ArFunctor1< P1 >

Base class for functors with 1 parameter.

This is the base class for functors with 1 parameter. Code that has a reference
to a functor that takes 1 parameter should use this class name. This allows
the code to know how to invoke the functor without knowing which class the
member function is in.

For an overall description of functors, see ArFunctor (p. 154).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

158 Aria Class Documentation

4.45.2 Member Function Documentation

4.45.2.1 template<class P1> virtual void ArFunctor1< P1
>::invoke (P1 p1) [pure virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented in ArFunctor2 (p. 164), ArFunctor3 (p. 172), Ar-
GlobalFunctor1 (p. 187), ArGlobalFunctor2 (p. 191), ArGlobalFunctor3
(p. 196), ArFunctor1C (p. 161), ArFunctor2C (p. 168), and ArFunctor3C
(p. 178).

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.46 ArFunctor1C Class Template Reference 159

4.46 ArFunctor1C Class Template Reference

Functor for a member function with 1 parameter.

#include <ArFunctor.h>

Inheritance diagram for ArFunctor1C::

ArFunctor1C

ArFunctor1< P1 >

ArFunctor

Public Methods

• ArFunctor1C ()
Constructor.

• ArFunctor1C (T &obj, void(T::∗func)(P1))
Constructor - supply function pointer.

• ArFunctor1C (T &obj, void(T::∗func)(P1), P1 p1)
Constructor - supply function pointer, default parameters.

• ArFunctor1C (T ∗obj, void(T::∗func)(P1))
Constructor - supply function pointer.

• ArFunctor1C (T ∗obj, void(T::∗func)(P1), P1 p1)
Constructor - supply function pointer, default parameters.

• virtual ∼ArFunctor1C ()
Destructor.

• virtual void invoke (void)
Invokes the functor.

• virtual void invoke (P1 p1)
Invokes the functor.

• virtual void setThis (T ∗obj)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

160 Aria Class Documentation

Set the ’this’ pointer.

• virtual void setThis (T &obj)

Set the ’this’ pointer.

• virtual void setP1 (P1 p1)

Set the default parameter.

4.46.1 Detailed Description

template<class T, class P1> class ArFunctor1C< T, P1 >

Functor for a member function with 1 parameter.

This is a class for member functions which take 1 parameter. This class contains
the knowledge on how to call a member function on a particular instance of a
class. This class should be instantiated by code that wishes to pass off a functor
to another piece of code.

For an overall description of functors, see ArFunctor (p. 154).

4.46.2 Constructor & Destructor Documentation

4.46.2.1 template<class T, class P1> ArFunctor1C< T, P1
>::ArFunctor1C (T & obj, void(T::∗ func)(P1)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.46.2.2 template<class T, class P1> ArFunctor1C< T, P1
>::ArFunctor1C (T & obj, void(T::∗ func)(P1), P1 p1)
[inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.46 ArFunctor1C Class Template Reference 161

4.46.2.3 template<class T, class P1> ArFunctor1C< T, P1
>::ArFunctor1C (T ∗ obj, void(T::∗ func)(P1)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.46.2.4 template<class T, class P1> ArFunctor1C< T, P1
>::ArFunctor1C (T ∗ obj, void(T::∗ func)(P1), P1 p1)
[inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

4.46.3 Member Function Documentation

4.46.3.1 template<class T, class P1> virtual void ArFunctor1C<
T, P1 >::invoke (P1 p1) [inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor1 (p. 158).

4.46.3.2 template<class T, class P1> virtual void ArFunctor1C<
T, P1 >::setP1 (P1 p1) [inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

162 Aria Class Documentation

4.46.3.3 template<class T, class P1> virtual void ArFunctor1C<
T, P1 >::setThis (T & obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

4.46.3.4 template<class T, class P1> virtual void ArFunctor1C<
T, P1 >::setThis (T ∗ obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.47 ArFunctor2 Class Template Reference 163

4.47 ArFunctor2 Class Template Reference

Base class for functors with 2 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArFunctor2::

ArFunctor2

ArFunctor1< P1 >

ArFunctor

ArFunctor2C ArFunctor3 ArGlobalFunctor2

ArFunctor3C ArGlobalFunctor3

Public Methods

• virtual ∼ArFunctor2 ()
Destructor.

• virtual void invoke (void)=0
Invokes the functor.

• virtual void invoke (P1 p1)=0
Invokes the functor.

• virtual void invoke (P1 p1, P2 p2)=0
Invokes the functor.

4.47.1 Detailed Description

template<class P1, class P2> class ArFunctor2< P1, P2 >

Base class for functors with 2 parameters.

This is the base class for functors with 2 parameters. Code that has a reference
to a functor that takes 2 parameters should use this class name. This allows

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

164 Aria Class Documentation

the code to know how to invoke the functor without knowing which class the
member function is in.

For an overall description of functors, see ArFunctor (p. 154).

4.47.2 Member Function Documentation

4.47.2.1 template<class P1, class P2> virtual void ArFunctor2<
P1, P2 >::invoke (P1 p1, P2 p2) [pure virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented in ArFunctor3 (p. 171), ArGlobalFunctor2 (p. 191), Ar-
GlobalFunctor3 (p. 196), ArFunctor2C (p. 168), and ArFunctor3C
(p. 178).

4.47.2.2 template<class P1, class P2> virtual void ArFunctor2<
P1, P2 >::invoke (P1 p1) [pure virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor1 (p. 158).

Reimplemented in ArFunctor3 (p. 172), ArGlobalFunctor2 (p. 191), Ar-
GlobalFunctor3 (p. 196), ArFunctor2C (p. 168), and ArFunctor3C
(p. 178).

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.48 ArFunctor2C Class Template Reference 165

4.48 ArFunctor2C Class Template Reference

Functor for a member function with 2 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArFunctor2C::

ArFunctor2C

ArFunctor2< P1, P2 >

ArFunctor1< P1 >

ArFunctor

Public Methods

• ArFunctor2C ()

Constructor.

• ArFunctor2C (T &obj, void(T::∗func)(P1, P2))

Constructor - supply function pointer.

• ArFunctor2C (T &obj, void(T::∗func)(P1, P2), P1 p1)

Constructor - supply function pointer, default parameters.

• ArFunctor2C (T &obj, void(T::∗func)(P1, P2), P1 p1, P2 p2)

Constructor - supply function pointer, default parameters.

• ArFunctor2C (T ∗obj, void(T::∗func)(P1, P2))

Constructor - supply function pointer.

• ArFunctor2C (T ∗obj, void(T::∗func)(P1, P2), P1 p1)

Constructor - supply function pointer, default parameters.

• ArFunctor2C (T ∗obj, void(T::∗func)(P1, P2), P1 p1, P2 p2)

Constructor - supply function pointer, default parameters.

• virtual ∼ArFunctor2C ()

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

166 Aria Class Documentation

Destructor.

• virtual void invoke (void)
Invokes the functor.

• virtual void invoke (P1 p1)
Invokes the functor.

• virtual void invoke (P1 p1, P2 p2)
Invokes the functor.

• virtual void setThis (T ∗obj)
Set the ’this’ pointer.

• virtual void setThis (T &obj)
Set the ’this’ pointer.

• virtual void setP1 (P1 p1)
Set the default parameter.

• virtual void setP2 (P2 p2)
Set the default 2nd parameter.

4.48.1 Detailed Description

template<class T, class P1, class P2> class ArFunctor2C< T, P1, P2
>

Functor for a member function with 2 parameters.

This is a class for member functions which take 2 parameters. This class contains
the knowledge on how to call a member function on a particular instance of a
class. This class should be instantiated by code that wishes to pass off a functor
to another piece of code.

For an overall description of functors, see ArFunctor (p. 154).

4.48.2 Constructor & Destructor Documentation

4.48.2.1 template<class T, class P1, class P2> ArFunctor2C< T,
P1, P2 >::ArFunctor2C (T & obj, void(T::∗ func)(P1, P2))
[inline]

Constructor - supply function pointer.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.48 ArFunctor2C Class Template Reference 167

Parameters:
func member function pointer

4.48.2.2 template<class T, class P1, class P2> ArFunctor2C< T,
P1, P2 >::ArFunctor2C (T & obj, void(T::∗ func)(P1, P2),
P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer
p1 default first parameter

4.48.2.3 template<class T, class P1, class P2> ArFunctor2C< T,
P1, P2 >::ArFunctor2C (T & obj, void(T::∗ func)(P1, P2),
P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer
p1 default first parameter
p2 default second parameter

4.48.2.4 template<class T, class P1, class P2> ArFunctor2C< T,
P1, P2 >::ArFunctor2C (T ∗ obj, void(T::∗ func)(P1, P2))
[inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.48.2.5 template<class T, class P1, class P2> ArFunctor2C< T,
P1, P2 >::ArFunctor2C (T ∗ obj, void(T::∗ func)(P1, P2),
P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer
p1 default first parameter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

168 Aria Class Documentation

4.48.2.6 template<class T, class P1, class P2> ArFunctor2C< T,
P1, P2 >::ArFunctor2C (T ∗ obj, void(T::∗ func)(P1, P2),
P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer
p1 default first parameter
p2 default second parameter

4.48.3 Member Function Documentation

4.48.3.1 template<class T, class P1, class P2> virtual void
ArFunctor2C< T, P1, P2 >::invoke (P1 p1, P2 p2)
[inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter
p2 second parameter

Reimplemented from ArFunctor2 (p. 164).

4.48.3.2 template<class T, class P1, class P2> virtual void
ArFunctor2C< T, P1, P2 >::invoke (P1 p1) [inline,
virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor2 (p. 164).

4.48.3.3 template<class T, class P1, class P2> virtual void
ArFunctor2C< T, P1, P2 >::setP1 (P1 p1) [inline,
virtual]

Set the default parameter.

Parameters:
p1 default first parameter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.48 ArFunctor2C Class Template Reference 169

4.48.3.4 template<class T, class P1, class P2> virtual void
ArFunctor2C< T, P1, P2 >::setP2 (P2 p2) [inline,
virtual]

Set the default 2nd parameter.

Parameters:
p2 default second parameter

4.48.3.5 template<class T, class P1, class P2> virtual void
ArFunctor2C< T, P1, P2 >::setThis (T & obj) [inline,
virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

4.48.3.6 template<class T, class P1, class P2> virtual void
ArFunctor2C< T, P1, P2 >::setThis (T ∗ obj) [inline,
virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

170 Aria Class Documentation

4.49 ArFunctor3 Class Template Reference

Base class for functors with 3 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArFunctor3::

ArFunctor3

ArFunctor2< P1, P2 >

ArFunctor1< P1 >

ArFunctor

ArFunctor3C ArGlobalFunctor3

Public Methods

• virtual ∼ArFunctor3 ()

Destructor.

• virtual void invoke (void)=0

Invokes the functor.

• virtual void invoke (P1 p1)=0

Invokes the functor.

• virtual void invoke (P1 p1, P2 p2)=0

Invokes the functor.

• virtual void invoke (P1 p1, P2 p2, P3 p3)=0

Invokes the functor.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.49 ArFunctor3 Class Template Reference 171

4.49.1 Detailed Description

template<class P1, class P2, class P3> class ArFunctor3< P1, P2, P3
>

Base class for functors with 3 parameters.

This is the base class for functors with 3 parameters. Code that has a reference
to a functor that takes 3 parameters should use this class name. This allows
the code to know how to invoke the functor without knowing which class the
member function is in.

For an overall description of functors, see ArFunctor (p. 154).

4.49.2 Member Function Documentation

4.49.2.1 template<class P1, class P2, class P3> virtual void
ArFunctor3< P1, P2, P3 >::invoke (P1 p1, P2 p2, P3 p3)
[pure virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

p3 third parameter

Reimplemented in ArGlobalFunctor3 (p. 196), and ArFunctor3C (p. 177).

4.49.2.2 template<class P1, class P2, class P3> virtual void
ArFunctor3< P1, P2, P3 >::invoke (P1 p1, P2 p2) [pure
virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArFunctor2 (p. 164).

Reimplemented in ArGlobalFunctor3 (p. 196), and ArFunctor3C (p. 178).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

172 Aria Class Documentation

4.49.2.3 template<class P1, class P2, class P3> virtual void
ArFunctor3< P1, P2, P3 >::invoke (P1 p1) [pure
virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor2 (p. 164).

Reimplemented in ArGlobalFunctor3 (p. 196), and ArFunctor3C (p. 178).

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.50 ArFunctor3C Class Template Reference 173

4.50 ArFunctor3C Class Template Reference

Functor for a member function with 3 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArFunctor3C::

ArFunctor3C

ArFunctor3< P1, P2, P3 >

ArFunctor2< P1, P2 >

ArFunctor1< P1 >

ArFunctor

Public Methods

• ArFunctor3C ()

Constructor.

• ArFunctor3C (T &obj, void(T::∗func)(P1, P2, P3))

Constructor - supply function pointer.

• ArFunctor3C (T &obj, void(T::∗func)(P1, P2, P3), P1 p1)

Constructor - supply function pointer, default parameters.

• ArFunctor3C (T &obj, void(T::∗func)(P1, P2, P3), P1 p1, P2 p2)

Constructor - supply function pointer, default parameters.

• ArFunctor3C (T &obj, void(T::∗func)(P1, P2, P3), P1 p1, P2 p2, P3
p3)

Constructor - supply function pointer, default parameters.

• ArFunctor3C (T ∗obj, void(T::∗func)(P1, P2, P3))

Constructor - supply function pointer.

• ArFunctor3C (T ∗obj, void(T::∗func)(P1, P2, P3), P1 p1)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

174 Aria Class Documentation

Constructor - supply function pointer, default parameters.

• ArFunctor3C (T ∗obj, void(T::∗func)(P1, P2, P3), P1 p1, P2 p2)

Constructor - supply function pointer, default parameters.

• ArFunctor3C (T ∗obj, void(T::∗func)(P1, P2, P3), P1 p1, P2 p2, P3
p3)

Constructor - supply function pointer, default parameters.

• virtual ∼ArFunctor3C ()

Destructor.

• virtual void invoke (void)

Invokes the functor.

• virtual void invoke (P1 p1)

Invokes the functor.

• virtual void invoke (P1 p1, P2 p2)

Invokes the functor.

• virtual void invoke (P1 p1, P2 p2, P3 p3)

Invokes the functor.

• virtual void setThis (T ∗obj)

Set the ’this’ pointer.

• virtual void setThis (T &obj)

Set the ’this’ pointer.

• virtual void setP1 (P1 p1)

Set the default parameter.

• virtual void setP2 (P2 p2)

Set the default 2nd parameter.

• virtual void setP3 (P3 p3)

Set the default third parameter.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.50 ArFunctor3C Class Template Reference 175

4.50.1 Detailed Description

template<class T, class P1, class P2, class P3> class ArFunctor3C<
T, P1, P2, P3 >

Functor for a member function with 3 parameters.

This is a class for member functions which take 3 parameters. This class contains
the knowledge on how to call a member function on a particular instance of a
class. This class should be instantiated by code that wishes to pass off a functor
to another piece of code.

For an overall description of functors, see ArFunctor (p. 154).

4.50.2 Constructor & Destructor Documentation

4.50.2.1 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T & obj,
void(T::∗ func)(P1, P2, P3)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.50.2.2 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T & obj,
void(T::∗ func)(P1, P2, P3), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

4.50.2.3 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T & obj,
void(T::∗ func)(P1, P2, P3), P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

176 Aria Class Documentation

p1 default first parameter

p2 default second parameter

4.50.2.4 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T &
obj, void(T::∗ func)(P1, P2, P3), P1 p1, P2 p2, P3 p3)
[inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

p2 default second parameter

p3 default third parameter

4.50.2.5 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T ∗ obj,
void(T::∗ func)(P1, P2, P3)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.50.2.6 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T ∗ obj,
void(T::∗ func)(P1, P2, P3), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.50 ArFunctor3C Class Template Reference 177

4.50.2.7 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T ∗ obj,
void(T::∗ func)(P1, P2, P3), P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

p2 default second parameter

4.50.2.8 template<class T, class P1, class P2, class P3>
ArFunctor3C< T, P1, P2, P3 >::ArFunctor3C (T ∗
obj, void(T::∗ func)(P1, P2, P3), P1 p1, P2 p2, P3 p3)
[inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

p2 default second parameter

p3 default third parameter

4.50.3 Member Function Documentation

4.50.3.1 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::invoke (P1 p1, P2
p2, P3 p3) [inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

p3 third parameter

Reimplemented from ArFunctor3 (p. 171).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

178 Aria Class Documentation

4.50.3.2 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::invoke (P1 p1, P2
p2) [inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArFunctor3 (p. 171).

4.50.3.3 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::invoke (P1 p1)
[inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor3 (p. 172).

4.50.3.4 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::setP1 (P1 p1)
[inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

4.50.3.5 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::setP2 (P2 p2)
[inline, virtual]

Set the default 2nd parameter.

Parameters:
p2 default second parameter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.50 ArFunctor3C Class Template Reference 179

4.50.3.6 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::setP3 (P3 p3)
[inline, virtual]

Set the default third parameter.

Parameters:
p3 default third parameter

4.50.3.7 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::setThis (T & obj)
[inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

4.50.3.8 template<class T, class P1, class P2, class P3> virtual
void ArFunctor3C< T, P1, P2, P3 >::setThis (T ∗ obj)
[inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

180 Aria Class Documentation

4.51 ArFunctorASyncTask Class Reference

This is like ArASyncTask (p. 119), but instead of runThread it uses a functor
to run.

#include <ArFunctorASyncTask.h>

Inheritance diagram for ArFunctorASyncTask::

ArFunctorASyncTask

ArASyncTask

ArThread

Public Methods

• ArFunctorASyncTask (ArRetFunctor1< void ∗, void ∗> ∗functor)
Constructor.

• virtual ∼ArFunctorASyncTask ()
Destructor.

• virtual void ∗ runThread (void ∗arg)
Our reimplementation of runThread.

4.51.1 Detailed Description

This is like ArASyncTask (p. 119), but instead of runThread it uses a functor
to run.

The documentation for this class was generated from the following files:

• ArFunctorASyncTask.h
• ArFunctorASyncTask.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.52 ArFunctorC Class Template Reference 181

4.52 ArFunctorC Class Template Reference

Functor for a member function.

#include <ArFunctor.h>

Inheritance diagram for ArFunctorC::

ArFunctorC

ArFunctor

Public Methods

• ArFunctorC ()
Constructor.

• ArFunctorC (T &obj, void(T::∗func)(void))
Constructor - supply function pointer.

• ArFunctorC (T ∗obj, void(T::∗func)(void))
Constructor - supply function pointer.

• virtual ∼ArFunctorC ()
Destructor.

• virtual void invoke (void)
Invokes the functor.

• virtual void setThis (T ∗obj)
Set the ’this’ pointer.

• virtual void setThis (T &obj)
Set the ’this’ pointer.

4.52.1 Detailed Description

template<class T> class ArFunctorC< T >

Functor for a member function.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

182 Aria Class Documentation

This is a class for member functions. This class contains the knowledge on how
to call a member function on a particular instance of a class. This class should
be instantiated by code that wishes to pass off a functor to another piece of
code.

For an overall description of functors, see ArFunctor (p. 154).

4.52.2 Constructor & Destructor Documentation

4.52.2.1 template<class T> ArFunctorC< T >::ArFunctorC (T &
obj, void(T::∗ func)(void)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.52.2.2 template<class T> ArFunctorC< T >::ArFunctorC (T ∗
obj, void(T::∗ func)(void)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.52.3 Member Function Documentation

4.52.3.1 template<class T> virtual void ArFunctorC< T >::setThis
(T & obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

4.52.3.2 template<class T> virtual void ArFunctorC< T >::setThis
(T ∗ obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.52 ArFunctorC Class Template Reference 183

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

184 Aria Class Documentation

4.53 ArGlobalFunctor Class Reference

Functor for a global function with no parameters.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalFunctor::

ArGlobalFunctor

ArFunctor

Public Methods

• ArGlobalFunctor ()

Constructor.

• ArGlobalFunctor (void(∗func)(void))

Constructor - supply function pointer.

• virtual ∼ArGlobalFunctor ()

Destructor.

• virtual void invoke (void)

Invokes the functor.

4.53.1 Detailed Description

Functor for a global function with no parameters.

This is a class for global functions. This ties a C style function pointer into the
functor class hierarchy as a convience. Code that has a reference to this class
and treat it as an ArFunctor (p. 154) can use it like any other functor.

For an overall description of functors, see ArFunctor (p. 154).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.53 ArGlobalFunctor Class Reference 185

4.53.2 Constructor & Destructor Documentation

4.53.2.1 ArGlobalFunctor::ArGlobalFunctor (void(∗ func)(void))
[inline]

Constructor - supply function pointer.

Parameters:
func global function pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

186 Aria Class Documentation

4.54 ArGlobalFunctor1 Class Template Refer-
ence

Functor for a global function with 1 parameter.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalFunctor1::

ArGlobalFunctor1

ArFunctor1< P1 >

ArFunctor

Public Methods

• ArGlobalFunctor1 ()

Constructor.

• ArGlobalFunctor1 (void(∗func)(P1))

Constructor - supply function pointer.

• ArGlobalFunctor1 (void(∗func)(P1), P1 p1)

Constructor - supply function pointer, default parameters.

• virtual ∼ArGlobalFunctor1 ()

Destructor.

• virtual void invoke (void)

Invokes the functor.

• virtual void invoke (P1 p1)

Invokes the functor.

• virtual void setP1 (P1 p1)

Set the default parameter.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.54 ArGlobalFunctor1 Class Template Reference 187

4.54.1 Detailed Description

template<class P1> class ArGlobalFunctor1< P1 >

Functor for a global function with 1 parameter.

This is a class for global functions which take 1 parameter. This ties a C style
function pointer into the functor class hierarchy as a convience. Code that has
a reference to this class and treat it as an ArFunctor (p. 154) can use it like
any other functor.

For an overall description of functors, see ArFunctor (p. 154).

4.54.2 Constructor & Destructor Documentation

4.54.2.1 template<class P1> ArGlobalFunctor1< P1
>::ArGlobalFunctor1 (void(∗ func)(P1)) [inline]

Constructor - supply function pointer.

Parameters:
func global function pointer

4.54.2.2 template<class P1> ArGlobalFunctor1< P1
>::ArGlobalFunctor1 (void(∗ func)(P1), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer

p1 default first parameter

4.54.3 Member Function Documentation

4.54.3.1 template<class P1> virtual void ArGlobalFunctor1< P1
>::invoke (P1 p1) [inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor1 (p. 158).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

188 Aria Class Documentation

4.54.3.2 template<class P1> virtual void ArGlobalFunctor1< P1
>::setP1 (P1 p1) [inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.55 ArGlobalFunctor2 Class Template Reference 189

4.55 ArGlobalFunctor2 Class Template Refer-
ence

Functor for a global function with 2 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalFunctor2::

ArGlobalFunctor2

ArFunctor2< P1, P2 >

ArFunctor1< P1 >

ArFunctor

Public Methods

• ArGlobalFunctor2 ()
Constructor.

• ArGlobalFunctor2 (void(∗func)(P1, P2))
Constructor - supply function pointer.

• ArGlobalFunctor2 (void(∗func)(P1, P2), P1 p1)
Constructor - supply function pointer, default parameters.

• ArGlobalFunctor2 (void(∗func)(P1, P2), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

• virtual ∼ArGlobalFunctor2 ()
Destructor.

• virtual void invoke (void)
Invokes the functor.

• virtual void invoke (P1 p1)
Invokes the functor.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

190 Aria Class Documentation

• virtual void invoke (P1 p1, P2 p2)
Invokes the functor.

• virtual void setP1 (P1 p1)
Set the default parameter.

• virtual void setP2 (P2 p2)
Set the default 2nd parameter.

4.55.1 Detailed Description

template<class P1, class P2> class ArGlobalFunctor2< P1, P2 >

Functor for a global function with 2 parameters.

This is a class for global functions which take 2 parameters. This ties a C style
function pointer into the functor class hierarchy as a convience. Code that has
a reference to this class and treat it as an ArFunctor (p. 154) can use it like
any other functor.

For an overall description of functors, see ArFunctor (p. 154).

4.55.2 Constructor & Destructor Documentation

4.55.2.1 template<class P1, class P2> ArGlobalFunctor2< P1, P2
>::ArGlobalFunctor2 (void(∗ func)(P1, P2)) [inline]

Constructor - supply function pointer.

Parameters:
func global function pointer

4.55.2.2 template<class P1, class P2> ArGlobalFunctor2< P1,
P2 >::ArGlobalFunctor2 (void(∗ func)(P1, P2), P1 p1)
[inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer

p1 default first parameter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.55 ArGlobalFunctor2 Class Template Reference 191

4.55.2.3 template<class P1, class P2> ArGlobalFunctor2< P1, P2
>::ArGlobalFunctor2 (void(∗ func)(P1, P2), P1 p1, P2 p2)
[inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer
p1 default first parameter
p2 default second parameter

4.55.3 Member Function Documentation

4.55.3.1 template<class P1, class P2> virtual void
ArGlobalFunctor2< P1, P2 >::invoke (P1 p1, P2 p2)
[inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter
p2 second parameter

Reimplemented from ArFunctor2 (p. 164).

4.55.3.2 template<class P1, class P2> virtual void
ArGlobalFunctor2< P1, P2 >::invoke (P1 p1) [inline,
virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor2 (p. 164).

4.55.3.3 template<class P1, class P2> virtual void
ArGlobalFunctor2< P1, P2 >::setP1 (P1 p1) [inline,
virtual]

Set the default parameter.

Parameters:
p1 default first parameter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

192 Aria Class Documentation

4.55.3.4 template<class P1, class P2> virtual void
ArGlobalFunctor2< P1, P2 >::setP2 (P2 p2) [inline,
virtual]

Set the default 2nd parameter.

Parameters:
p2 default second parameter

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.56 ArGlobalFunctor3 Class Template Reference 193

4.56 ArGlobalFunctor3 Class Template Refer-
ence

Functor for a global function with 3 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalFunctor3::

ArGlobalFunctor3

ArFunctor3< P1, P2, P3 >

ArFunctor2< P1, P2 >

ArFunctor1< P1 >

ArFunctor

Public Methods

• ArGlobalFunctor3 ()
Constructor.

• ArGlobalFunctor3 (void(∗func)(P1, P2, P3))
Constructor - supply function pointer.

• ArGlobalFunctor3 (void(∗func)(P1, P2, P3), P1 p1)
Constructor - supply function pointer, default parameters.

• ArGlobalFunctor3 (void(∗func)(P1, P2, P3), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

• ArGlobalFunctor3 (void(∗func)(P1, P2, P3), P1 p1, P2 p2, P3 p3)
Constructor - supply function pointer, default parameters.

• virtual ∼ArGlobalFunctor3 ()
Destructor.

• virtual void invoke (void)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

194 Aria Class Documentation

Invokes the functor.

• virtual void invoke (P1 p1)

Invokes the functor.

• virtual void invoke (P1 p1, P2 p2)

Invokes the functor.

• virtual void invoke (P1 p1, P2 p2, P3 p3)

Invokes the functor.

• virtual void setP1 (P1 p1)

Set the default parameter.

• virtual void setP2 (P2 p2)

Set the default 2nd parameter.

• virtual void setP3 (P3 p3)

Set the default third parameter.

4.56.1 Detailed Description

template<class P1, class P2, class P3> class ArGlobalFunctor3< P1,
P2, P3 >

Functor for a global function with 3 parameters.

This is a class for global functions which take 3 parameters. This ties a C style
function pointer into the functor class hierarchy as a convience. Code that has
a reference to this class and treat it as an ArFunctor (p. 154) can use it like
any other functor.

For an overall description of functors, see ArFunctor (p. 154).

4.56.2 Constructor & Destructor Documentation

4.56.2.1 template<class P1, class P2, class P3> ArGlobalFunctor3<
P1, P2, P3 >::ArGlobalFunctor3 (void(∗ func)(P1, P2,
P3)) [inline]

Constructor - supply function pointer.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.56 ArGlobalFunctor3 Class Template Reference 195

Parameters:
func global function pointer

4.56.2.2 template<class P1, class P2, class P3> ArGlobalFunctor3<
P1, P2, P3 >::ArGlobalFunctor3 (void(∗ func)(P1, P2,
P3), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer

p1 default first parameter

4.56.2.3 template<class P1, class P2, class P3> ArGlobalFunctor3<
P1, P2, P3 >::ArGlobalFunctor3 (void(∗ func)(P1, P2,
P3), P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer

p1 default first parameter

p2 default second parameter

4.56.2.4 template<class P1, class P2, class P3> ArGlobalFunctor3<
P1, P2, P3 >::ArGlobalFunctor3 (void(∗ func)(P1, P2,
P3), P1 p1, P2 p2, P3 p3) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer

p1 default first parameter

p2 default second parameter

p3 default third parameter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

196 Aria Class Documentation

4.56.3 Member Function Documentation

4.56.3.1 template<class P1, class P2, class P3> virtual void
ArGlobalFunctor3< P1, P2, P3 >::invoke (P1 p1, P2 p2,
P3 p3) [inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

p3 third parameter

Reimplemented from ArFunctor3 (p. 171).

4.56.3.2 template<class P1, class P2, class P3> virtual void
ArGlobalFunctor3< P1, P2, P3 >::invoke (P1 p1, P2 p2)
[inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArFunctor3 (p. 171).

4.56.3.3 template<class P1, class P2, class P3> virtual void
ArGlobalFunctor3< P1, P2, P3 >::invoke (P1 p1)
[inline, virtual]

Invokes the functor.

Parameters:
p1 first parameter

Reimplemented from ArFunctor3 (p. 172).

4.56.3.4 template<class P1, class P2, class P3> virtual void
ArGlobalFunctor3< P1, P2, P3 >::setP1 (P1 p1) [inline,
virtual]

Set the default parameter.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.56 ArGlobalFunctor3 Class Template Reference 197

Parameters:
p1 default first parameter

4.56.3.5 template<class P1, class P2, class P3> virtual void
ArGlobalFunctor3< P1, P2, P3 >::setP2 (P2 p2) [inline,
virtual]

Set the default 2nd parameter.

Parameters:
p2 default second parameter

4.56.3.6 template<class P1, class P2, class P3> virtual void
ArGlobalFunctor3< P1, P2, P3 >::setP3 (P3 p3) [inline,
virtual]

Set the default third parameter.

Parameters:
p3 default third parameter

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

198 Aria Class Documentation

4.57 ArGlobalRetFunctor Class Template Ref-
erence

Functor for a global function with return value.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalRetFunctor::

ArGlobalRetFunctor

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArGlobalRetFunctor ()
Constructor.

• ArGlobalRetFunctor (Ret(∗func)(void))
Constructor - supply function pointer.

• virtual ∼ArGlobalRetFunctor ()
Destructor.

• virtual Ret invokeR (void)
Invokes the functor with return value.

4.57.1 Detailed Description

template<class Ret> class ArGlobalRetFunctor< Ret >

Functor for a global function with return value.

This is a class for global functions which return a value. This ties a C style
function pointer into the functor class hierarchy as a convience. Code that has
a reference to this class and treat it as an ArFunctor (p. 154) can use it like
any other functor.

For an overall description of functors, see ArFunctor (p. 154).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.57 ArGlobalRetFunctor Class Template Reference 199

4.57.2 Constructor & Destructor Documentation

4.57.2.1 template<class Ret> ArGlobalRetFunctor< Ret
>::ArGlobalRetFunctor (Ret(∗ func)(void)) [inline]

Constructor - supply function pointer.

Parameters:
func global function pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

200 Aria Class Documentation

4.58 ArGlobalRetFunctor1 Class Template Ref-
erence

Functor for a global function with 1 parameter and return value.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalRetFunctor1::

ArGlobalRetFunctor1

ArRetFunctor1< Ret, P1 >

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArGlobalRetFunctor1 ()
Constructor.

• ArGlobalRetFunctor1 (Ret(∗func)(P1))
Constructor - supply function pointer.

• ArGlobalRetFunctor1 (Ret(∗func)(P1), P1 p1)
Constructor - supply function pointer, default parameters.

• virtual ∼ArGlobalRetFunctor1 ()
Destructor.

• virtual Ret invokeR (void)
Invokes the functor with return value.

• virtual Ret invokeR (P1 p1)
Invokes the functor with return value.

• virtual void setP1 (P1 p1)
Set the default parameter.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.58 ArGlobalRetFunctor1 Class Template Reference 201

4.58.1 Detailed Description

template<class Ret, class P1> class ArGlobalRetFunctor1< Ret, P1
>

Functor for a global function with 1 parameter and return value.

This is a class for global functions which take 1 parameter and return a value.
This ties a C style function pointer into the functor class hierarchy as a con-
vience. Code that has a reference to this class and treat it as an ArFunctor
(p. 154) can use it like any other functor.

For an overall description of functors, see ArFunctor (p. 154).

4.58.2 Constructor & Destructor Documentation

4.58.2.1 template<class Ret, class P1> ArGlobalRetFunctor1<
Ret, P1 >::ArGlobalRetFunctor1 (Ret(∗ func)(P1))
[inline]

Constructor - supply function pointer.

Parameters:
func global function pointer

4.58.2.2 template<class Ret, class P1> ArGlobalRetFunctor1<
Ret, P1 >::ArGlobalRetFunctor1 (Ret(∗ func)(P1), P1
p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer

p1 default first parameter

4.58.3 Member Function Documentation

4.58.3.1 template<class Ret, class P1> virtual Ret
ArGlobalRetFunctor1< Ret, P1 >::invokeR (P1 p1)
[inline, virtual]

Invokes the functor with return value.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

202 Aria Class Documentation

Parameters:
p1 first parameter

Reimplemented from ArRetFunctor1 (p. 336).

4.58.3.2 template<class Ret, class P1> virtual void
ArGlobalRetFunctor1< Ret, P1 >::setP1 (P1 p1)
[inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.59 ArGlobalRetFunctor2 Class Template Reference 203

4.59 ArGlobalRetFunctor2 Class Template Ref-
erence

Functor for a global function with 2 parameters and return value.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalRetFunctor2::

ArGlobalRetFunctor2

ArRetFunctor2< Ret, P1, P2 >

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArGlobalRetFunctor2 ()
Constructor.

• ArGlobalRetFunctor2 (Ret(∗func)(P1, P2))
Constructor - supply function pointer.

• ArGlobalRetFunctor2 (Ret(∗func)(P1, P2), P1 p1)
Constructor - supply function pointer, default parameters.

• ArGlobalRetFunctor2 (Ret(∗func)(P1, P2), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

• virtual ∼ArGlobalRetFunctor2 ()
Destructor.

• virtual Ret invokeR (void)
Invokes the functor with return value.

• virtual Ret invokeR (P1 p1)
Invokes the functor with return value.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

204 Aria Class Documentation

• virtual Ret invokeR (P1 p1, P2 p2)
Invokes the functor with return value.

• virtual void setP1 (P1 p1)
Set the default parameter.

• virtual void setP2 (P2 p2)
Set the default 2nd parameter.

4.59.1 Detailed Description

template<class Ret, class P1, class P2> class ArGlobalRetFunctor2<
Ret, P1, P2 >

Functor for a global function with 2 parameters and return value.

This is a class for global functions which take 2 parameters and return a value.
This ties a C style function pointer into the functor class hierarchy as a con-
vience. Code that has a reference to this class and treat it as an ArFunctor
(p. 154) can use it like any other functor.

For an overall description of functors, see ArFunctor (p. 154).

4.59.2 Constructor & Destructor Documentation

4.59.2.1 template<class Ret, class P1, class P2> ArGlobalRet-
Functor2< Ret, P1, P2 >::ArGlobalRetFunctor2 (Ret(∗
func)(P1, P2)) [inline]

Constructor - supply function pointer.

Parameters:
func global function pointer

4.59.2.2 template<class Ret, class P1, class P2> ArGlobalRet-
Functor2< Ret, P1, P2 >::ArGlobalRetFunctor2 (Ret(∗
func)(P1, P2), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer
p1 default first parameter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.59 ArGlobalRetFunctor2 Class Template Reference 205

4.59.2.3 template<class Ret, class P1, class P2> ArGlobalRet-
Functor2< Ret, P1, P2 >::ArGlobalRetFunctor2 (Ret(∗
func)(P1, P2), P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer
p2 default second parameter

4.59.3 Member Function Documentation

4.59.3.1 template<class Ret, class P1, class P2> virtual Ret
ArGlobalRetFunctor2< Ret, P1, P2 >::invokeR (P1 p1,
P2 p2) [inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter
p2 second parameter

Reimplemented from ArRetFunctor2 (p. 342).

4.59.3.2 template<class Ret, class P1, class P2> virtual Ret
ArGlobalRetFunctor2< Ret, P1, P2 >::invokeR (P1 p1)
[inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

Reimplemented from ArRetFunctor2 (p. 342).

4.59.3.3 template<class Ret, class P1, class P2> virtual void
ArGlobalRetFunctor2< Ret, P1, P2 >::setP1 (P1 p1)
[inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

206 Aria Class Documentation

4.59.3.4 template<class Ret, class P1, class P2> virtual void
ArGlobalRetFunctor2< Ret, P1, P2 >::setP2 (P2 p2)
[inline, virtual]

Set the default 2nd parameter.

Parameters:
p2 default second parameter

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.60 ArGlobalRetFunctor3 Class Template Reference 207

4.60 ArGlobalRetFunctor3 Class Template Ref-
erence

Functor for a global function with 2 parameters and return value.

#include <ArFunctor.h>

Inheritance diagram for ArGlobalRetFunctor3::

ArGlobalRetFunctor3

ArRetFunctor3< Ret, P1, P2, P3 >

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArGlobalRetFunctor3 ()
Constructor.

• ArGlobalRetFunctor3 (Ret(∗func)(P1, P2, P3))
Constructor - supply function pointer.

• ArGlobalRetFunctor3 (Ret(∗func)(P1, P2, P3), P1 p1)
Constructor - supply function pointer, default parameters.

• ArGlobalRetFunctor3 (Ret(∗func)(P1, P2, P3), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

• ArGlobalRetFunctor3 (Ret(∗func)(P1, P2, P3), P1 p1, P2 p2, P3 p3)
Constructor - supply function pointer, default parameters.

• virtual ∼ArGlobalRetFunctor3 ()
Destructor.

• virtual Ret invokeR (void)
Invokes the functor with return value.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

208 Aria Class Documentation

• virtual Ret invokeR (P1 p1)
Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2)
Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2, P3 p3)
Invokes the functor with return value.

• virtual void setP1 (P1 p1)
Set the default parameter.

• virtual void setP2 (P2 p2)
Set the default 2nd parameter.

• virtual void setP3 (P3 p3)
Set the default third parameter.

4.60.1 Detailed Description

template<class Ret, class P1, class P2, class P3> class ArGlobalRet-
Functor3< Ret, P1, P2, P3 >

Functor for a global function with 2 parameters and return value.

This is a class for global functions which take 2 parameters and return a value.
This ties a C style function pointer into the functor class hierarchy as a con-
vience. Code that has a reference to this class and treat it as an ArFunctor
(p. 154) can use it like any other functor.

For an overall description of functors, see ArFunctor (p. 154).

4.60.2 Constructor & Destructor Documentation

4.60.2.1 template<class Ret, class P1, class P2, class
P3> ArGlobalRetFunctor3< Ret, P1, P2, P3
>::ArGlobalRetFunctor3 (Ret(∗ func)(P1, P2, P3))
[inline]

Constructor - supply function pointer.

Parameters:
func global function pointer

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.60 ArGlobalRetFunctor3 Class Template Reference 209

4.60.2.2 template<class Ret, class P1, class P2, class
P3> ArGlobalRetFunctor3< Ret, P1, P2, P3
>::ArGlobalRetFunctor3 (Ret(∗ func)(P1, P2, P3), P1 p1)
[inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer
p1 default first parameter

4.60.2.3 template<class Ret, class P1, class P2, class
P3> ArGlobalRetFunctor3< Ret, P1, P2, P3
>::ArGlobalRetFunctor3 (Ret(∗ func)(P1, P2, P3), P1 p1,
P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer
p1 default first parameter
p2 default second parameter

4.60.2.4 template<class Ret, class P1, class P2, class
P3> ArGlobalRetFunctor3< Ret, P1, P2, P3
>::ArGlobalRetFunctor3 (Ret(∗ func)(P1, P2, P3), P1 p1,
P2 p2, P3 p3) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func global function pointer
p1 default first parameter
p2 default second parameter

4.60.3 Member Function Documentation

4.60.3.1 template<class Ret, class P1, class P2, class P3> virtual
Ret ArGlobalRetFunctor3< Ret, P1, P2, P3 >::invokeR
(P1 p1, P2 p2, P3 p3) [inline, virtual]

Invokes the functor with return value.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

210 Aria Class Documentation

Parameters:
p1 first parameter

p2 second parameter

p3 third parameter

Reimplemented from ArRetFunctor3 (p. 350).

4.60.3.2 template<class Ret, class P1, class P2, class P3> virtual
Ret ArGlobalRetFunctor3< Ret, P1, P2, P3 >::invokeR
(P1 p1, P2 p2) [inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArRetFunctor3 (p. 350).

4.60.3.3 template<class Ret, class P1, class P2, class P3> virtual
Ret ArGlobalRetFunctor3< Ret, P1, P2, P3 >::invokeR
(P1 p1) [inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

Reimplemented from ArRetFunctor3 (p. 350).

4.60.3.4 template<class Ret, class P1, class P2, class P3> virtual
void ArGlobalRetFunctor3< Ret, P1, P2, P3 >::setP1 (P1
p1) [inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.60 ArGlobalRetFunctor3 Class Template Reference 211

4.60.3.5 template<class Ret, class P1, class P2, class P3> virtual
void ArGlobalRetFunctor3< Ret, P1, P2, P3 >::setP2 (P2
p2) [inline, virtual]

Set the default 2nd parameter.

Parameters:
p2 default second parameter

4.60.3.6 template<class Ret, class P1, class P2, class P3> virtual
void ArGlobalRetFunctor3< Ret, P1, P2, P3 >::setP3 (P3
p3) [inline, virtual]

Set the default third parameter.

Parameters:
p3 default third parameter

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

212 Aria Class Documentation

4.61 ArGripper Class Reference

A class of convenience functions for using the gripper.

#include <ArGripper.h>

Public Types

• enum Type { QUERYTYPE, GENIO, USERIO, GRIPPAC, NO-
GRIPPER }

These are the types for the gripper.

Public Methods

• ArGripper (ArRobot ∗robot, int gripperType=QUERYTYPE)

Constructor.

• virtual ∼ArGripper ()

Destructor.

• bool gripOpen (void)

Opens the gripper paddles.

• bool gripClose (void)

Closes the gripper paddles.

• bool gripStop (void)

Stops the gripper paddles.

• bool liftUp (void)

Raises the lift to the top.

• bool liftDown (void)

Lowers the lift to the bottom.

• bool liftStop (void)

Stops the lift.

• bool gripperStore (void)

Puts the gripper in a storage position.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.61 ArGripper Class Reference 213

• bool gripperDeploy (void)

Puts the gripper in a deployed position, ready for use.

• bool gripperHalt (void)

Halts the lift and the gripper paddles.

• bool gripPressure (int mSecIntervals)

Sets the amount of pressure the gripper applies.

• bool liftCarry (int mSecIntervals)

Raises the lift by a given amount of time.

• bool isGripMoving (void) const

Returns true if the gripper paddles are moving.

• bool isLiftMoving (void) const

Returns true if the lift is moving.

• int getGripState (void) const

Returns the state of the gripper paddles.

• int getPaddleState (void) const

Returns the state of each gripper paddle.

• int getBreakBeamState (void) const

Returns the state of the gripper’s breakbeams.

• bool isLiftMaxed (void) const

Returns the state of the lift.

• int getType (void) const

Gets the type of the gripper.

• void setType (int type)

Sets the type of the gripper.

• long getMSecSinceLastPacket (void) const

Gets the number of mSec since the last gripper packet.

• int getGraspTime (void) const

Gets the grasp time.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

214 Aria Class Documentation

• void logState (void) const

logs the gripper state.

• bool packetHandler (ArRobotPacket ∗packet)

Parses the gripper packet.

• void connectHandler (void)

The handler for when the robot connects.

4.61.1 Detailed Description

A class of convenience functions for using the gripper.

The commands which start with grip are for the gripper paddles, the ones which
start with lift are the for the lift, and the ones which start with gripper are for
the entire unit.

4.61.2 Member Enumeration Documentation

4.61.2.1 enum ArGripper::Type

These are the types for the gripper.

Enumeration values:
QUERYTYPE Finds out what type from the robot, default.

GENIO Uses general IO.

USERIO Uses the user IO.

GRIPPAC Uses a packet requested from the robot.

NOGRIPPER There isn’t a gripper.

4.61.3 Constructor & Destructor Documentation

4.61.3.1 ArGripper::ArGripper (ArRobot ∗ robot, int gripperType
= QUERYTYPE)

Constructor.

Parameters:
robot The robot this gripper is attached to

useGenIO Whether the gripper on this robot is using GenIO or not

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.61 ArGripper Class Reference 215

4.61.4 Member Function Documentation

4.61.4.1 int ArGripper::getBreakBeamState (void) const

Returns the state of the gripper’s breakbeams.

Returns:
0 if no breakbeams broken, 1 if inner breakbeam broken, 2 if outter break-
beam broken, 3 if both breakbeams broken

4.61.4.2 int ArGripper::getGraspTime (void) const

Gets the grasp time.

If you are using this as anything other than GRIPPAC and you want to find out
the grasp time again, just do a setType with QUERYTYPE and it will query
the robot again and get the grasp time from the robot.

Returns:
the number of 20 MSec intervals the gripper will continue grasping for after
both paddles are triggered

4.61.4.3 int ArGripper::getGripState (void) const

Returns the state of the gripper paddles.

Returns:
0 if gripper paddles between open and closed, 1 if gripper paddles are open,
2 if gripper paddles are closed

4.61.4.4 long ArGripper::getMSecSinceLastPacket (void) const

Gets the number of mSec since the last gripper packet.

Returns:
the number of milliseconds since the last packet

4.61.4.5 int ArGripper::getPaddleState (void) const

Returns the state of each gripper paddle.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

216 Aria Class Documentation

Returns:
0 if no gripper paddles are triggered, 1 if the left paddle is triggered, 2 if
the right paddle is triggered, 3 if both are triggered

4.61.4.6 int ArGripper::getType (void) const

Gets the type of the gripper.

Returns:
the gripper type

See also:
Type (p. 214)

4.61.4.7 bool ArGripper::gripClose (void)

Closes the gripper paddles.

Returns:
whether the command was sent to the robot or not

4.61.4.8 bool ArGripper::gripOpen (void)

Opens the gripper paddles.

Returns:
whether the command was sent to the robot or not

4.61.4.9 bool ArGripper::gripPressure (int mSecIntervals)

Sets the amount of pressure the gripper applies.

Returns:
whether the command was sent to the robot or not

4.61.4.10 bool ArGripper::gripStop (void)

Stops the gripper paddles.

Returns:
whether the command was sent to the robot or not

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.61 ArGripper Class Reference 217

4.61.4.11 bool ArGripper::gripperDeploy (void)

Puts the gripper in a deployed position, ready for use.

Returns:
whether the command was sent to the robot or not

4.61.4.12 bool ArGripper::gripperHalt (void)

Halts the lift and the gripper paddles.

Returns:
whether the command was sent to the robot or not

4.61.4.13 bool ArGripper::gripperStore (void)

Puts the gripper in a storage position.

Returns:
whether the command was sent to the robot or not

4.61.4.14 bool ArGripper::isGripMoving (void) const

Returns true if the gripper paddles are moving.

Returns:
true if the gripper paddles are moving

4.61.4.15 bool ArGripper::isLiftMaxed (void) const

Returns the state of the lift.

Returns:
false if lift is between up and down, true is either all the way up or down

4.61.4.16 bool ArGripper::isLiftMoving (void) const

Returns true if the lift is moving.

Returns:
true if the lift is moving

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

218 Aria Class Documentation

4.61.4.17 bool ArGripper::liftCarry (int mSecIntervals)

Raises the lift by a given amount of time.

Returns:
whether the command was sent to the robot or not

4.61.4.18 bool ArGripper::liftDown (void)

Lowers the lift to the bottom.

Returns:
whether the command was sent to the robot or not

4.61.4.19 bool ArGripper::liftStop (void)

Stops the lift.

Returns:
whether the command was sent to the robot or not

4.61.4.20 bool ArGripper::liftUp (void)

Raises the lift to the top.

Returns:
whether the command was sent to the robot or not

4.61.4.21 void ArGripper::setType (int type)

Sets the type of the gripper.

Parameters:
type the type of gripper to set it to

The documentation for this class was generated from the following files:

• ArGripper.h
• ArGripper.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.62 ArGripperCommands Class Reference 219

4.62 ArGripperCommands Class Reference

A class with an enum of the commands for the gripper.

#include <ArGripper.h>

Public Types

• enum Commands { GRIP OPEN = 1, GRIP CLOSE = 2, GRIP -
STOP = 3, LIFT UP = 4, LIFT DOWN = 5, LIFT STOP = 6,
GRIPPER STORE = 7, GRIPPER DEPLOY = 8, GRIPPER -
HALT = 15, GRIP PRESSURE = 16, LIFT CARRY }

4.62.1 Detailed Description

A class with an enum of the commands for the gripper.

A class with an enum of the commands for the gripper, see the p2 operations
manual and the gripper guide for more detailed descriptions. The enum values
which start with GRIP are for the gripper paddles, the ones which start with
LIFT are the for the lift, and the ones which start with GRIPPER are for the
entire unit.

4.62.2 Member Enumeration Documentation

4.62.2.1 enum ArGripperCommands::Commands

Enumeration values:
GRIP OPEN open the gripper paddles fully.

GRIP CLOSE close the gripper paddles all the way.

GRIP STOP stop the gripper paddles where they are.

LIFT UP raises the lift to the top of its range.

LIFT DOWN lowers the lift to the bottom of its range.

LIFT STOP stops the lift where it is.

GRIPPER STORE closes the paddles and raises the lift simultane-
ously, this is for storage not for grasping/carrying an object

GRIPPER DEPLOY opens the paddles and lowers the lieft simultane-
ously, this is for getting ready to grasp an object, not for object drops

GRIPPER HALT stops the gripper paddles and lift from moving.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

220 Aria Class Documentation

GRIP PRESSURE sets the time delay in 20 msec increments after the
gripper paddles first grasp an object before they stop moving, regulates
grasp pressure

LIFT CARRY raises or lowers the lieft, the argument is the number of
20 msec increments to raise or lower the lift, poseitive arguments for
raise, negative for lower

The documentation for this class was generated from the following file:

• ArGripper.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.63 Aria Class Reference 221

4.63 Aria Class Reference

This class performs global initialization and deinitialization.

#include <ariaInternal.h>

Public Types

• enum SigHandleMethod { SIGHANDLE SINGLE, SIGHAN-
DLE THREAD, SIGHANDLE NONE }

Static Public Methods

• void init (SigHandleMethod method=SIGHANDLE THREAD, bool
initSockets=true)

Performs OS-specific initialization.

• void uninit ()

Performs OS-specific deinitialization.

• void addInitCallBack (ArFunctor ∗cb, ArListPos::Pos position)

Adds a callback to call when Aria is inited.

• void addUninitCallBack (ArFunctor ∗cb, ArListPos::Pos posi-
tion)

Adds a callback to call when Aria is uninited.

• void shutdown ()

Shutdown all Aria processes/threads.

• void exit ()

Force an exit of all Aria processes/threads.

• bool getRunning (void)

Sees if Aria is still running (mostly for the thread in main).

• void addRobot (ArRobot ∗robot)

Add a robot to the global list of robots.

• void delRobot (ArRobot ∗robot)

Remove a robot from the global list of robots.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

222 Aria Class Documentation

• ArRobot ∗ findRobot (char ∗name)

Finds a robot in the global list of robots, by name.

• std::list< ArRobot ∗> ∗ getRobotList ()

Get a copy of the global robot list.

• void setDirectory (const char ∗directory)

Sets the directory that ARIA resides in.

• const char ∗ getDirectory (void)

Gets the directory that ARIA resides in.

• void setKeyHandler (ArKeyHandler ∗keyHandler)

Sets the key handler, so that other classes can find it.

• ArKeyHandler ∗ getKeyHandler (void)

Gets the joystick handler if one has been set.

• void setJoyHandler (ArJoyHandler ∗joyHandler)

Sets the joystick handler, so that other classes can find it.

• ArJoyHandler ∗ getJoyHandler (void)

Gets the key handler if one has been set.

• void signalHandlerCB (int sig)

Internal, the callback for the signal handling.

4.63.1 Detailed Description

This class performs global initialization and deinitialization.

4.63.2 Member Enumeration Documentation

4.63.2.1 enum Aria::SigHandleMethod

Enumeration values:
SIGHANDLE SINGLE Setup signal handlers in a global, non-thread

way.

SIGHANDLE THREAD Setup a dedicated signal handling thread.

SIGHANDLE NONE Do no signal handling.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.63 Aria Class Reference 223

4.63.3 Member Function Documentation

4.63.3.1 void Aria::addInitCallBack (ArFunctor ∗ cb,
ArListPos::Pos position) [static]

Adds a callback to call when Aria is inited.

This will add a callback to the list of callbacks to call when Aria has been
initialized. It can be called before anything else.

4.63.3.2 void Aria::addUninitCallBack (ArFunctor ∗ cb,
ArListPos::Pos position) [static]

Adds a callback to call when Aria is uninited.

This will add a callback to the list of callbacks to call right before Aria is un-
initialized. It can be called before anything else. This facilitates code that
in operating system signal handlers simply calls Aria::uninit() (p. 225) and
packages that are based on Aria are unitited as well. It simplifies the entire
uninit process.

4.63.3.3 void Aria::exit () [static]

Force an exit of all Aria processes/threads.

This calls cancel() on all AtThread’s and ArASyncTask (p. 119)’s. It forces
each thread to exit and should only be used in the case of a thread hanging or
getting stuck in an infinite loop. This works fine in Linux. In Windows it is
not recommended at all that this function be called. Windows can not handle
cleanly killing off a thread. See the help in the VC++ compiler on the WIN32
function TerminateThread. The biggest problem is that the state of DLL’s can
be destroyed.

4.63.3.4 ArRobot ∗ Aria::findRobot (char ∗ name) [static]

Finds a robot in the global list of robots, by name.

Parameters:
name the name of the robot you want to find

Returns:
NULL if there is no robot of that name, otherwise the robot with that name

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

224 Aria Class Documentation

4.63.3.5 const char ∗ Aria::getDirectory (void) [static]

Gets the directory that ARIA resides in.

This gets the directory that ARIA is located in, this is so ARIA can find param
files and the like.

Returns:
the directory ARIA is located in

See also:
setDirectory (p. 225)

4.63.3.6 bool Aria::getRunning (void) [static]

Sees if Aria is still running (mostly for the thread in main).

This returns if the ARIA stuff is running, which is defined as the time between
Aria::init (p. 224) and any of Aria::shutdown (p. 225), Aria::exit (p. 223),
or the signal handler kicking off.

4.63.3.7 void Aria::init (SigHandleMethod method =
SIGHANDLE THREAD, bool initSockets = true)
[static]

Performs OS-specific initialization.

This must be called first before any other Aria functions. It initializes the
thread layer and the signal handling method. For Windows it iniatializes the
socket layer as well. This also sets the directory Aria is located in from the
ARIA environmental variable, for a description of this see getDirectory and
setDirectory.

For Linux the default signal handling method is to cleanly close down the pro-
gram, cause all the instances of ArRobot (p. 362) to stop their run loop and
disconnect from their robot. The program will exit on the following signals:
SigHUP, SigINT, SigQUIT, and SigTERM.

For Windows, there is no signal handling.

Parameters:
method the method in which to handle signals. Defaulted to SIGHAN-

DLE SINGLE.

initSockets specify whether or not to initialize the socket layer. This is
only meaningfull for Windows. Defaulted to true.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.63 Aria Class Reference 225

See also:
ArSignalHandler (p. 477) , ArSocket (p. 485)

4.63.3.8 void Aria::setDirectory (const char ∗ directory) [static]

Sets the directory that ARIA resides in.

This sets the directory that ARIA is located in, so ARIA can find param files and
the like. This can also be controlled by the environment variable ARIA, which
this is set to (if it exists) when Aria::init (p. 224) is done. So for setDirectory
to be effective, it must be done after the Aria::init (p. 224).

Parameters:
directory the directory Aria is located in

See also:
getDirectory (p. 224)

4.63.3.9 void Aria::shutdown () [static]

Shutdown all Aria processes/threads.

This calls stop() on all ArThread (p. 513)’s and ArASyncTask (p. 119)’s. It
will block until all ArThread (p. 513)’s and ArASyncTask (p. 119)’s exit. It
is expected that all the tasks will obey the ArThread::myRunning (p. 515)
variable and exit when it is false.

4.63.3.10 void Aria::uninit () [static]

Performs OS-specific deinitialization.

This must be called last, after all other Aria functions. For both Linux and
Windows, it closes all the open ArModules. For Windows it deinitializes the
socket layer as well.

The documentation for this class was generated from the following files:

• ariaInternal.h
• Aria.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

226 Aria Class Documentation

4.64 ArInterpolation Class Reference

#include <ArInterpolation.h>

Public Methods

• ArInterpolation (size t numberOfReadings=100)

Constructor.

• virtual ∼ArInterpolation ()

Destructor.

• bool addReading (ArTime timeOfReading, ArPose position)

Adds a new reading.

• int getPose (ArTime timeStamp, ArPose ∗position)

Finds a position.

• void setNumberOfReadings (size t numberOfReadings)

Sets the number of readings this instance holds back in time.

• size t getNumberOfReadings (void) const

Gets the number of readings this instance holds back in time.

• void reset (void)

Empties the interpolated positions.

4.64.1 Detailed Description

This class takes care of storing in readings of position vs time, and then interpo-
lating between them to find where the robot was at a particular point in time.
It has two lists, one containing the times, and one containing the positions at
those same times (per position), they must be walked through jointly to main-
tain cohesion. The new entries are at the front of the list, while the old ones
are at the back. numberOfReadings and the setNumberOfReadings control the
number of entries in the list. If a size is set that is smaller than the current size,
then the old ones are chopped off.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.64 ArInterpolation Class Reference 227

4.64.2 Member Function Documentation

4.64.2.1 int ArInterpolation::getPose (ArTime timeStamp, ArPose
∗ position)

Finds a position.

Parameters:
timeStamp the time we are interested in

position the pose to set to the given position

Returns:
1 its good interpolation, 0 its predicting, -1 its too far to predict, -2 its too
old, -3 there’s not enough data to predict

The documentation for this class was generated from the following files:

• ArInterpolation.h
• ArInterpolation.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

228 Aria Class Documentation

4.65 ArIrrfDevice Class Reference

A class for connecting to a PB-9 and managing the resulting data.

#include <ArIrrfDevice.h>

Inheritance diagram for ArIrrfDevice::

ArIrrfDevice

ArRangeDevice

Public Methods

• ArIrrfDevice (size t currentBufferSize=91, size t cumulativeBuffer-
Size=273, const char ∗name=”irrf”)

Constructor.

• ∼ArIrrfDevice ()

Destructor.

• bool packetHandler (ArRobotPacket ∗packet)

The packet handler for use when connecting to an H8 micro-controller.

• void setCumulativeMaxRange (double r)

Maximum range for a reading to be added to the cumulative buffer (mm).

• virtual void setRobot (ArRobot ∗)
Sets the robot this device is attached to.

4.65.1 Detailed Description

A class for connecting to a PB-9 and managing the resulting data.

This class is for use with a PB9 IR rangefinder. It has the packethandler neces-
sary to process the packets, and will put the data into ArRangeBuffers for use
with obstacle avoidance, etc.

The PB9 is still under development, and only works on an H8 controller running
AROS.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.65 ArIrrfDevice Class Reference 229

4.65.2 Member Function Documentation

4.65.2.1 bool ArIrrfDevice::packetHandler (ArRobotPacket ∗
packet)

The packet handler for use when connecting to an H8 micro-controller.

This is the packet handler for the PB9 data, which is sent via the micro con-
troller, to the client. This will read the data from the packets, and then call
processReadings to filter add the data to the current and cumulative buffers.

The documentation for this class was generated from the following files:

• ArIrrfDevice.h
• ArIrrfDevice.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

230 Aria Class Documentation

4.66 ArJoyHandler Class Reference

Interfaces to a joystick.

#include <ArJoyHandler.h>

Public Methods

• ArJoyHandler (bool useOSCal=true, bool useOldJoystick=false)
Constructor.

• ∼ArJoyHandler ()
Destructor.

• bool init (void)
Intializes the joystick, returns true if successful.

• bool haveJoystick (void)
Returns if the joystick was successfully initialized or not.

• void getDoubles (double ∗x, double ∗y, double ∗z=NULL)
Gets the adjusted reading, as floats, between -1.0 and 1.0.

• bool getButton (unsigned int button)
Gets the button.

• bool haveZAxis (void)
Returns true if we definitely have a Z axis (we don’t know in windows unless
it moves).

• void setSpeeds (int x, int y, int z=0)
Sets the max that X or Y will return.

• void getAdjusted (int ∗x, int ∗y, int ∗z=NULL)
Gets the adjusted reading, as integers, based on the setSpeed.

• unsigned int getNumAxes (void)
Gets the number of axes the joystick has.

• double getAxis (unsigned int axis)
Gets the floating (-1 to 1) location of the given joystick axis.

• unsigned int getNumButtons (void)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.66 ArJoyHandler Class Reference 231

Gets the number of buttons the joystick has.

• void setUseOSCal (bool useOSCal)
Sets whether to just use OS calibration or not.

• bool getUseOSCal (void)
Gets whether to just use OS calibration or not.

• void startCal (void)
Starts the calibration process.

• void endCal (void)
Ends the calibration process.

• void getUnfiltered (int ∗x, int ∗y, int ∗z=NULL)
Gets the unfilitered reading, mostly for internal use, maybe useful for Cali-
bration.

• void getStats (int ∗maxX, int ∗minX, int ∗maxY, int ∗minY, int ∗cenX,
int ∗cenY)

Gets the stats for the joystick, useful after calibrating to save values.

• void setStats (int maxX, int minX, int maxY, int minY, int cenX, int
cenY)

Sets the stats for the joystick, useful for restoring calibrated settings.

• void getSpeeds (int ∗x, int ∗y, int ∗z)
Gets the speeds that X and Y are set to.

4.66.1 Detailed Description

Interfaces to a joystick.

The joystick handler keeps track of the minimum and maximums for both axes,
updating them to constantly be better calibrated. The speeds set influence what
is returned by getAdjusted...

The joystick is not opened until init is called. What should basically be done to
use this class is to ’init’ a joystick, do a ’setSpeed’ so you can use ’getAdusted’,
then at some point do a ’getButton’ to see if a button is pressed, and then do
a ’getAdjusted’ to get the values to act on.

Also note that x is usually rotational velocity (since it right/left), whereas Y is
translational (since it is up/down).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

232 Aria Class Documentation

You can also use this to do multiple uses with the joystick, for example to have
button 1 drive the robot while to have button 2 move the camera, you can get
the different values you want (don’t want to move the camera as quickly or as
far as the robot) by using setSpeed before doing getAdjusted since setSpeed is
fast and won’t take any time.

4.66.2 Constructor & Destructor Documentation

4.66.2.1 ArJoyHandler::ArJoyHandler (bool useOSCal = true,
bool useOld = false)

Constructor.

Parameters:
useOSCal if this is set then the joystick will just rely on the OS to cali-

brate, otherwise it will keep track of center min and max and use those
values for calibration

useOld use the old linux interface to the joystick

4.66.3 Member Function Documentation

4.66.3.1 void ArJoyHandler::endCal (void)

Ends the calibration process.

Ends the calibration, which also sets the center to where the joystick is when
the function is called... the center is never reset except in this function, whereas
the min and maxes are constantly checked

See also:
startCal (p. 235)

4.66.3.2 void ArJoyHandler::getAdjusted (int ∗ x, int ∗ y, int ∗ z =
NULL)

Gets the adjusted reading, as integers, based on the setSpeed.

if useOSCal is true then this returns the readings as calibrated from the OS. If
useOSCal is false this finds the percentage of the distance between center and
max (or min) then takes this percentage and multiplies it by the speeds given
the class, and returns the values computed from this.

Parameters:
x pointer to an integer in which to store the x value, which is between - x

given in set speeds and x given in set speeds

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.66 ArJoyHandler Class Reference 233

y pointer to an integer in which to store the y value, which is between - y
given in set speeds and y given in set speeds

4.66.3.3 double ArJoyHandler::getAxis (unsigned int axis)

Gets the floating (-1 to 1) location of the given joystick axis.

Parameters:
axis axis to get the value of axes are 1 through getNumAxes() (p. 234)

Returns:
true if the button is pressed, false otherwise

4.66.3.4 bool ArJoyHandler::getButton (unsigned int button)

Gets the button.

Parameters:
button button to test for pressed, buttons are 1 through getNum-

Buttons() (p. 234)

Returns:
true if the button is pressed, false otherwise

4.66.3.5 void ArJoyHandler::getDoubles (double ∗ x, double ∗ y,
double ∗ z = NULL)

Gets the adjusted reading, as floats, between -1.0 and 1.0.

If useOSCal is true then this returns the readings as calibrated from the OS. If
useOSCal is false this finds the percentage of the distance between center and
max (or min) then takes this percentage and multiplies it by the speeds given
the class, and returns the values computed from this.

Parameters:
x pointer to a double in which to store the x value, this value is a value

between -1.0 and 1.0, for where the stick is on that axis

y pointer to a double in which to store the y value, this value is a value
between -1.0 and 1.0, for where the stick is on that axis

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

234 Aria Class Documentation

4.66.3.6 unsigned int ArJoyHandler::getNumAxes (void)

Gets the number of axes the joystick has.

Returns:
the number of axes (1 through this number)

4.66.3.7 unsigned int ArJoyHandler::getNumButtons (void)

Gets the number of buttons the joystick has.

Returns:
the number of buttons (1 through this number)

4.66.3.8 void ArJoyHandler::getUnfiltered (int ∗ x, int ∗ y, int ∗ z
= NULL)

Gets the unfilitered reading, mostly for internal use, maybe useful for Calibra-
tion.

This returns the raw value from the joystick... with X and Y varying between
-128 and poseitive 128... this shouldn’t be used except in calibration since it’ll
give very strange readings. For example its not uncommon for a joystick to move
10 to the right but 50 or 100 to the left, so if you aren’t adjusting for this you get
a robot (or whatever) that goes left really fast, but will hardly go right, hence
you should use getAdjusted exclusively except for display in calibration.

Parameters:
x pointer to an integer in which to store x value

y pointer to an integer in which to store y value

4.66.3.9 bool ArJoyHandler::getUseOSCal (void)

Gets whether to just use OS calibration or not.

Returns:
if useOSCal is set then the joystick will just rely on the OS to calibrate,
otherwise it will keep track of center min and max and use those values for
calibration

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.66 ArJoyHandler Class Reference 235

4.66.3.10 void ArJoyHandler::setUseOSCal (bool useOSCal)

Sets whether to just use OS calibration or not.

Parameters:
useOSCal if this is set then the joystick will just rely on the OS to cali-

brate, otherwise it will keep track of center min and max and use those
values for calibration

4.66.3.11 void ArJoyHandler::startCal (void)

Starts the calibration process.

Starts the calibration, which resets all the min and max variables as well as the
center variables.

See also:
endCal (p. 232)

The documentation for this class was generated from the following files:

• ArJoyHandler.h
• ArJoyHandler.cpp
• ArJoyHandler LIN.cpp
• ArJoyHandler WIN.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

236 Aria Class Documentation

4.67 ArKeyHandler Class Reference

This class will read input from the keyboard.

#include <ArKeyHandler.h>

Public Types

• enum KEY { UP = 256, DOWN, LEFT, RIGHT, ESCAPE,
SPACE, TAB, ENTER, BACKSPACE, F1, F2, F3, F4 }

These are enums for the non-ascii keys.

Public Methods

• ArKeyHandler (bool blocking=false)

Constructor.

• ∼ArKeyHandler ()

Destructor.

• bool addKeyHandler (int keyToHandle, ArFunctor ∗functor)

This adds a keyhandler, when the keyToHandle is hit, functor will fire.

• bool remKeyHandler (int keyToHandler)

This removes a key handler, by key.

• bool remKeyHandler (ArFunctor ∗functor)

This removes a key handler, by key.

• void restore (void)

Sets stdin back to its original settings, if its been restored it won’t read any-
more.

• void checkKeys (void)

intnernal, use addKeyHandler, Checks for keys and handles them.

• int getKey (void)

internal, use addKeyHandler instead... Gets a key from the stdin if ones
available, -1 if there aren’t any available.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.67 ArKeyHandler Class Reference 237

4.67.1 Detailed Description

This class will read input from the keyboard.

This class is for handling input from the keyboard, you just addKeyHandler the
keys you want to deal with.

You should also register the keyhandler with Aria::setKeyHandler (p. 222),
and before you create a key handler you should see if one is already there with
Aria::getKeyHandler (p. 222).

You can attach a key handler to a robot with ArRobot::attachKeyHandler
(p. 386) which will put a task into the robots list of tasks so that it’ll get checked
every cycle or you can just call checkKeys yourself (like in its own thread or in
the main thread). You should only attach a key handler to one robot, even if
you’re using multiple robots.

4.67.2 Member Enumeration Documentation

4.67.2.1 enum ArKeyHandler::KEY

These are enums for the non-ascii keys.

Enumeration values:
UP Up arrow (keypad or 4 key dirs).
DOWN Down arrow (keypad or 4 key dirs).
LEFT Left arrow (keypad or 4 key dirs).
RIGHT Right arrow (keypad or 4 key dirs).
ESCAPE Escape key.
SPACE Space key.
TAB Tab key.
ENTER Enter key.
BACKSPACE Backspace key.
F1 F1.
F2 F2.
F3 F3.
F4 F4.

4.67.3 Constructor & Destructor Documentation

4.67.3.1 ArKeyHandler::ArKeyHandler (bool blocking = false)

Constructor.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

238 Aria Class Documentation

Parameters:
blocking whether or not to block waiting on keys, default is false, ie not

to wait... you probably only want to block if you are using check-
Keys yourself like after you start a robot run or in its own thread or
something along those lines

4.67.4 Member Function Documentation

4.67.4.1 bool ArKeyHandler::addKeyHandler (int keyToHandle,
ArFunctor ∗ functor)

This adds a keyhandler, when the keyToHandle is hit, functor will fire.

Parameters:
keyToHandle this is an ascii character, such as ’a’ or ’1’ or ’[’, or a member

of the KEY enum.
functor a functor to call when the given key is pressed

Returns:
true if the addKeyHandler succeeded, which means that the key added was
unique and it will be handled... false means that the add failed, because
there was already a keyHandler in place for that key

4.67.4.2 bool ArKeyHandler::remKeyHandler (ArFunctor ∗
functor)

This removes a key handler, by key.

Parameters:
keyToHandle the functor to remove

Returns:
true if the remKeyHandler succeeded, which means that the key wad found
and rmeoved... false means that the remove failed because there was no
key for that

4.67.4.3 bool ArKeyHandler::remKeyHandler (int keyToHandle)

This removes a key handler, by key.

Parameters:
keyToHandle this is an ascii character, such as ’a’ or ’1’ or ’[’, or a member

of the KEY enum.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.67 ArKeyHandler Class Reference 239

Returns:
true if the remKeyHandler succeeded, which means that the key wad found
and rmeoved... false means that the remove failed because there was no
key for that

The documentation for this class was generated from the following files:

• ArKeyHandler.h
• ArKeyHandler.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

240 Aria Class Documentation

4.68 ArLine Class Reference

This is the class for a line to do some geometric manipulation.

#include <ariaUtil.h>

Public Methods

• ArLine (double a, double b, double c)

Constructor with parameters.

• ArLine (double x1, double y1, double x2, double y2)

Constructor with endpoints.

• virtual ∼ArLine ()

Destructor.

• void newParameters (double a, double b, double c)

Sets the line parameters (make it not a segment).

• void newParametersFromEndpoints (double x1, double y1, double x2,
double y2)

Sets the line parameters from endpoints, but makes it not a segment.

• const double getA (void) const

Gets the A line parameter.

• const double getB (void) const

Gets the B line parameter.

• const double getC (void) const

Gets the C line parameter.

• bool intersects (const ArLine ∗line, ArPose ∗pose)

finds the intersection of this line with another line.

• void makeLinePerp (const ArPose ∗pose, ArLine ∗line)

Makes the given line perpendicular to this one though the given pose.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.68 ArLine Class Reference 241

4.68.1 Detailed Description

This is the class for a line to do some geometric manipulation.

Note this the theoretical line, ie it goes infinitely, if you want what most people
think of as a line (ie with endpoints) use ArLineSegment (p. 242)

4.68.2 Member Function Documentation

4.68.2.1 bool ArLine::intersects (const ArLine ∗ line, ArPose ∗
pose) [inline]

finds the intersection of this line with another line.

Parameters:
line the line to check if it intersects with this line

pose if the lines intersect, the pose is set to the location

Returns:
true if they intersect, false if they do not

The documentation for this class was generated from the following file:

• ariaUtil.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

242 Aria Class Documentation

4.69 ArLineSegment Class Reference

This is the class for a line segment to do some geometric manipulation.

#include <ariaUtil.h>

Public Methods

• ArLineSegment (double x1, double y1, double x2, double y2)
Constructor with endpoints.

• virtual ∼ArLineSegment ()
Destructor.

• void newEndPoints (double x1, double y1, double x2, double y2)
Gives the line some new end points (makes it a segment).

• bool intersects (const ArLine ∗line, ArPose ∗pose)
Sees if a line intersects with this segment.

• bool intersects (ArLineSegment ∗line, ArPose ∗pose)
Sees if a line segment intersects with this segment.

• bool getPerpPoint (ArPose pose, ArPose ∗perpPoint)
Gets the point at which the given pose is perpindicular to the line.

• bool getPerpPoint (const ArPose ∗pose, ArPose ∗perpPoint)
Gets the point at which the given pose is perpindicular to the line.

• const double getX1 (void) const
Gets the x coordinate of the first endpoint (only use on segments).

• const double getY1 (void) const
Gets the y coordinate of the first endpoint (only use on segments).

• const double getX2 (void) const
Gets the x coordinate of the second endpoint (only use on segments).

• const double getY2 (void) const
Gets the y coordinate of the second endpoint (only use on segments).

• const double getA (void) const
Gets the A line parameter.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.69 ArLineSegment Class Reference 243

• const double getB (void) const
Gets the B line parameter.

• const double getC (void) const
Gets the C line parameter.

• const bool linePointIsInSegment (ArPose ∗pose) const
Internal function for seeing if a point on our line is within our segment.

Protected Attributes

• double myX1
Internal function to set the parameters of the line from endpoitns.

• double myY1
Internal function to set the parameters of the line from endpoitns.

• double myX2
Internal function to set the parameters of the line from endpoitns.

• double myY2
Internal function to set the parameters of the line from endpoitns.

4.69.1 Detailed Description

This is the class for a line segment to do some geometric manipulation.

4.69.2 Member Function Documentation

4.69.2.1 bool ArLineSegment::getPerpPoint (const ArPose ∗ pose,
ArPose ∗ perpPoint) [inline]

Gets the point at which the given pose is perpindicular to the line.

This is just a faster version for certain critical spots than the above one... use
the above one if you can... If the point is beyond either segment end this will
return false

Parameters:
pose the pointer of the pose to find the perp point of

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

244 Aria Class Documentation

pose the pointer of the pose to set to the found point

Returns:
true if the pose is within the bounds of the line segment

4.69.2.2 bool ArLineSegment::getPerpPoint (ArPose pose, ArPose
∗ perpPoint) [inline]

Gets the point at which the given pose is perpindicular to the line.

If the point is beyond either segment end this will return false

Parameters:
pose the pointer of the pose to find the perp point of

pose the pointer of the pose to set to the found point

Returns:
true if the pose is within the bounds of the line segment

4.69.2.3 bool ArLineSegment::intersects (ArLineSegment ∗ line,
ArPose ∗ pose) [inline]

Sees if a line segment intersects with this segment.

Parameters:
line the line segment to check if it intersects with this line

pose if the lines intersect, the pose is set to the location

Returns:
true if they intersect, false if they do not

4.69.2.4 bool ArLineSegment::intersects (const ArLine ∗ line,
ArPose ∗ pose) [inline]

Sees if a line intersects with this segment.

Parameters:
line the line to check if it intersects with this line

pose if the lines intersect, the pose is set to the location

Returns:
true if they intersect, false if they do not

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.69 ArLineSegment Class Reference 245

The documentation for this class was generated from the following file:

• ariaUtil.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

246 Aria Class Documentation

4.70 ArListPos Class Reference

has enum for position in list.

#include <ariaTypedefs.h>

Public Types

• enum Pos { FIRST = 1, LAST = 2 }

4.70.1 Detailed Description

has enum for position in list.

4.70.2 Member Enumeration Documentation

4.70.2.1 enum ArListPos::Pos

Enumeration values:
FIRST place item first in the list.

LAST place item last in the list.

The documentation for this class was generated from the following file:

• ariaTypedefs.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.71 ArLog Class Reference 247

4.71 ArLog Class Reference

Logging utility class.

#include <ArLog.h>

Public Types

• enum LogType { StdOut, StdErr, File, Colbert, None }
• enum LogLevel { Terse, Normal, Verbose }

Static Public Methods

• void log (LogLevel level, char ∗str,...)
Log a message.

• void logPlain (LogLevel level, char ∗str)
Log a message without varargs (wrapper for java) Log a message.

• bool init (LogType type, LogLevel level, const char ∗fileName=””, bool
logTime=false, bool alsoPrint=false)

Initialize the logging utility.

• void close ()
Close the logging utility.

4.71.1 Detailed Description

Logging utility class.

ArLog is a utility class to log all messages from Aria (p. 221) to a choosen
destintation. Messages can be logged to stdout, stderr, a file, and turned off
completely. Logging by default is set to stdout. The level of logging can be
changed as well. Allowed levels are Terse, Normal, and Verbose. By default the
level is set to Normal.

4.71.2 Member Enumeration Documentation

4.71.2.1 enum ArLog::LogLevel

Enumeration values:
Terse Use terse logging.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

248 Aria Class Documentation

Normal Use normal logging.
Verbose Use verbose logging.

4.71.2.2 enum ArLog::LogType

Enumeration values:
StdOut Use stdout for logging.
StdErr Use stderr for logging.
File Use a file for logging.
Colbert Use a Colbert stream for logging.
None Disable logging.

4.71.3 Member Function Documentation

4.71.3.1 bool ArLog::init (LogType type, LogLevel level, const char
∗ fileName = ””, bool logTime = false, bool alsoPrint =
false) [static]

Initialize the logging utility.

Initialize the logging utility by supplying the type of logging and the level of
logging. If the type is File, the fileName needs to be supplied.

Parameters:
type type of Logging
level level of logging
fileName the name of the file for File type of logging

4.71.3.2 void ArLog::log (LogLevel level, char ∗ str, ...) [static]

Log a message.

This function is used like printf(). If the supplied level is less than or equal to
the set level, it will be printed.

Parameters:
level level of logging
str printf() like formating string

The documentation for this class was generated from the following files:

• ArLog.h
• ArLog.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.72 ArLogFileConnection Class Reference 249

4.72 ArLogFileConnection Class Reference

For connecting through a log file.

#include <ArLogFileConnection.h>

Inheritance diagram for ArLogFileConnection::

ArLogFileConnection

ArDeviceConnection

Public Types

• enum Open { OPEN FILE NOT FOUND = 1, OPEN NOT A -
LOG FILE }

Public Methods

• ArLogFileConnection ()
Constructor.

• virtual ∼ArLogFileConnection ()
Destructor also closes connection.

• int open (const char ∗fname=NULL)
Opens a connection to the given host and port.

• virtual bool openSimple (void)
Opens the connection again, using the values from setLocation or.

• virtual int getStatus (void)
Gets the status of the connection, which is one of the enum status.

• virtual bool close (void)
Closes the connection.

• virtual int read (const char ∗data, unsigned int size, unsigned int ms-
Wait=0)

Reads data from connection.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

250 Aria Class Documentation

• virtual int write (const char ∗data, unsigned int size)

Writes data to connection.

• virtual const char ∗ getOpenMessage (int messageNumber)

Gets the string of the message associated with opening the device.

• virtual ArTime getTimeRead (int index)

Gets the time data was read in.

• virtual bool isTimeStamping (void)

sees if timestamping is really going on or not.

• const char ∗ getLogFile (void)

Gets the name of the host connected to.

• int internalOpen (void)

Internal function used by open and openSimple.

4.72.1 Detailed Description

For connecting through a log file.

4.72.2 Member Enumeration Documentation

4.72.2.1 enum ArLogFileConnection::Open

Enumeration values:
OPEN FILE NOT FOUND Can’t find the file.

OPEN NOT A LOG FILE Doesn’t look like a log file.

4.72.3 Member Function Documentation

4.72.3.1 bool ArLogFileConnection::close (void) [virtual]

Closes the connection.

Returns:
whether the close succeeded or not

Reimplemented from ArDeviceConnection (p. 139).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.72 ArLogFileConnection Class Reference 251

4.72.3.2 const char ∗ ArLogFileConnection::getLogFile (void)

Gets the name of the host connected to.

Returns:
the name of the log file

4.72.3.3 const char ∗ ArLogFileConnection::getOpenMessage (int
messageNumber) [virtual]

Gets the string of the message associated with opening the device.

Each class inherited from this one has an open method which returns 0 for
success or an integer which can be passed into this function to obtain a string
describing the reason for failure

Parameters:
messageNumber the number returned from the open

Returns:
the error description associated with the messageNumber

Reimplemented from ArDeviceConnection (p. 139).

4.72.3.4 int ArLogFileConnection::getStatus (void) [virtual]

Gets the status of the connection, which is one of the enum status.

Gets the status of the connection, which is one of the enum status. If you want
to get a string to go along with the number, use getStatusMessage

Returns:
the status of the connection

See also:
getStatusMessage (p. 140)

Reimplemented from ArDeviceConnection (p. 139).

4.72.3.5 ArTime ArLogFileConnection::getTimeRead (int index)
[virtual]

Gets the time data was read in.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

252 Aria Class Documentation

Parameters:
index looks like this is the index back in the number of bytes last read in

Returns:
the time the last read data was read in

Reimplemented from ArDeviceConnection (p. 140).

4.72.3.6 bool ArLogFileConnection::isTimeStamping (void)
[virtual]

sees if timestamping is really going on or not.

Returns:
true if real timestamping is happening, false otherwise

Reimplemented from ArDeviceConnection (p. 140).

4.72.3.7 int ArLogFileConnection::open (const char ∗ fname =
NULL)

Opens a connection to the given host and port.

Parameters:
fname the file to connect to, if NULL (default) then robot.log

Returns:
0 for success, otherwise one of the open enums

See also:
getOpenMessage (p. 251)

4.72.3.8 int ArLogFileConnection::read (const char ∗ data,
unsigned int size, unsigned int msWait = 0) [virtual]

Reads data from connection.

Reads data from connection

Parameters:
data pointer to a character array to read the data into

size maximum number of bytes to read

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.72 ArLogFileConnection Class Reference 253

msWait read blocks for this many milliseconds (not at all for < 0)

Returns:
number of bytes read, or -1 for failure

See also:
write (p. 253), writePacket (p. 142)

Reimplemented from ArDeviceConnection (p. 141).

4.72.3.9 int ArLogFileConnection::write (const char ∗ data,
unsigned int size) [virtual]

Writes data to connection.

Writes data to connection

Parameters:
data pointer to a character array to write the data from

size number of bytes to write

Returns:
number of bytes read, or -1 for failure

See also:
read (p. 252), writePacket (p. 142)

Reimplemented from ArDeviceConnection (p. 141).

The documentation for this class was generated from the following files:

• ArLogFileConnection.h
• ArLogFileConnection.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

254 Aria Class Documentation

4.73 ArMath Class Reference

This class has static members to do common math operations.

#include <ariaUtil.h>

Static Public Methods

• double addAngle (double ang1, double ang2)
This adds two angles together and fixes the result to [-180, 180].

• double subAngle (double ang1, double ang2)
This subtracts one angle from another and fixes the result to [-180,180].

• double fixAngle (double angle)
Takes an angle and returns the angle in range (-180,180].

• double degToRad (double deg)
Converts an angle in degrees to an angle in radians.

• double radToDeg (double rad)
Converts an angle in radians to an angle in degrees.

• double cos (double angle)
Finds the cos, from angles in degrees.

• double sin (double angle)
Finds the sin, from angles in degrees.

• double atan2 (double y, double x)
Finds the arctan of the given y/x pair.

• bool angleBetween (double angle, double startAngle, double endAngle)
Finds if one angle is between two other angles.

• double fabs (double val)
Finds the absolute value of a double.

• int roundInt (double val)
Finds the closest integer to double given.

• void pointRotate (double ∗x, double ∗y, double th)
Rotates a point around 0 by degrees given.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.73 ArMath Class Reference 255

• long random (void)
Returns a long between 0 and some arbitrary huge number.

• double distanceBetween (double x1, double y1, double x2, double y2)
Finds the distance between two coordinates.

• double squaredDistanceBetween (double x1, double y1, double x2,
double y2)

Finds the squared distance between two coordinates.

4.73.1 Detailed Description

This class has static members to do common math operations.

4.73.2 Member Function Documentation

4.73.2.1 double ArMath::addAngle (double ang1, double ang2)
[inline, static]

This adds two angles together and fixes the result to [-180, 180].

Parameters:
ang1 first angle

ang2 second angle, added to first

Returns:
sum of the angles, in range [-180,180]

See also:
subAngle (p. 258) , fixAngle (p. 257)

4.73.2.2 double ArMath::atan2 (double y, double x) [inline,
static]

Finds the arctan of the given y/x pair.

Parameters:
y the y distance

x the x distance

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

256 Aria Class Documentation

Returns:
the angle y and x form

4.73.2.3 double ArMath::cos (double angle) [inline, static]

Finds the cos, from angles in degrees.

Parameters:
angle angle to find the cos of, in degrees

Returns:
the cos of the angle

See also:
sin (p. 258)

4.73.2.4 double ArMath::degToRad (double deg) [inline, static]

Converts an angle in degrees to an angle in radians.

Parameters:
deg the angle in degrees

Returns:
the angle in radians

See also:
radToDeg (p. 257)

4.73.2.5 double ArMath::distanceBetween (double x1, double y1,
double x2, double y2) [inline, static]

Finds the distance between two coordinates.

Parameters:
x1 the first coords x position
y1 the first coords y position
x2 the second coords x position
y2 the second coords y position

Returns:
the distance between (x1, y1) and (x2, y2)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.73 ArMath Class Reference 257

4.73.2.6 double ArMath::fabs (double val) [inline, static]

Finds the absolute value of a double.

Parameters:
val the number to find the absolute value of

Returns:
the absolute value of the number

4.73.2.7 double ArMath::fixAngle (double angle) [inline, static]

Takes an angle and returns the angle in range (-180,180].

Parameters:
angle the angle to fix

Returns:
the angle in range (-180,180]

See also:
addAngle (p. 255) , subAngle (p. 258)

4.73.2.8 double ArMath::radToDeg (double rad) [inline, static]

Converts an angle in radians to an angle in degrees.

Parameters:
rad the angle in radians

Returns:
the angle in degrees

See also:
degToRad (p. 256)

4.73.2.9 int ArMath::roundInt (double val) [inline, static]

Finds the closest integer to double given.

Parameters:
val the double to find the nearest integer to

Returns:
the integer the value is nearest to

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

258 Aria Class Documentation

4.73.2.10 double ArMath::sin (double angle) [inline, static]

Finds the sin, from angles in degrees.

Parameters:
angle angle to find the sin of, in degrees

Returns:
the sin of the angle

See also:
cos (p. 256)

4.73.2.11 double ArMath::squaredDistanceBetween (double x1,
double y1, double x2, double y2) [inline, static]

Finds the squared distance between two coordinates.

use this only where speed really matters

Parameters:
x1 the first coords x position

y1 the first coords y position

x2 the second coords x position

y2 the second coords y position

Returns:
the distance between (x1, y1) and (x2, y2)

4.73.2.12 double ArMath::subAngle (double ang1, double ang2)
[inline, static]

This subtracts one angle from another and fixes the result to [-180,180].

Parameters:
ang1 first angle

ang2 second angle, subtracted from first angle

Returns:
resulting angle, in range [-180,180]

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.73 ArMath Class Reference 259

See also:
addAngle (p. 255) , fixAngle (p. 257)

The documentation for this class was generated from the following file:

• ariaUtil.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

260 Aria Class Documentation

4.74 ArMode Class Reference

A class for different modes, mostly as related to keyboard input.

#include <ArMode.h>

Inheritance diagram for ArMode::

ArMode

ArModeBumps

ArModeCamera

ArModeGripper

ArModeIO

ArModeLaser

ArModePosition

ArModeSonar

ArModeTeleop

ArModeUnguardedTeleop

ArModeWander

Public Methods

• ArMode (ArRobot ∗robot, const char ∗name, char key, char key2)

Constructor.

• virtual ∼ArMode ()

Destructor.

• const char ∗ getName (void)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.74 ArMode Class Reference 261

Gets the name of the mode.

• virtual void activate (void)=0
The function called when the mode is activated, subclass must provide.

• virtual void deactivate (void)=0
The function called when the mode is deactivated, subclass must provide.

• virtual void userTask (void)
The ArMode’s user task, don’t need one, subclass must provide if needed.

• virtual void help (void)
The mode’s help print out... subclass must provide if needed.

• bool baseActivate (void)
The base activation, it MUST be called by inheriting classes, and inheriting
classes MUST return if this returns false.

• bool baseDeactivate (void)
The base deactivation, it MUST be called by inheriting classes, and inheriting
classes MUST return if this returns false.

• char getKey (void)
An internal function to get the first key this is bound to.

• char getKey2 (void)
An internal function to get the second key this is bound to.

Static Public Methods

• void baseHelp (void)
This is the base help function, its internal, bound to ? and h and H.

4.74.1 Detailed Description

A class for different modes, mostly as related to keyboard input.

Each mode is going to need to add its keys to the keyHandler... each mode
should only use the keys 1-0, the arrow keys (movement), the space bar (stop),
z (zoom in), x (zoom out), and e (exercise)... then when its activate is called
by that key handler it needs to first deactivate the ourActiveMode (if its not

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

262 Aria Class Documentation

itself, in which case its done) then add its key handling stuff... activate and
deactivate will need to add and remove their user tasks (or call the base class
activate/deactivate to do it) as well as the key handling things for their other
part of modes. This mode will ALWAYS bind help to /, ?, h, and H when the
first instance of an ArMode is made.

4.74.2 Constructor & Destructor Documentation

4.74.2.1 ArMode::ArMode (ArRobot ∗ robot, const char ∗ name,
char key, char key2)

Constructor.

Parameters:
robot the robot we’re attaching to

name the name of this mode

key the first key to switch to this mode on... it can be ’\0’ if you don’t
want to use this

key the first key to switch to this mode on... it can be ’\0’ if you don’t
want to use this

4.74.3 Member Function Documentation

4.74.3.1 bool ArMode::baseActivate (void)

The base activation, it MUST be called by inheriting classes, and inheriting
classes MUST return if this returns false.

Inheriting modes must first call this to get their user task called and to deactivate
the active mode.... if it returns false then the inheriting class must return, as it
means that his mode is already active

4.74.3.2 bool ArMode::baseDeactivate (void)

The base deactivation, it MUST be called by inheriting classes, and inheriting
classes MUST return if this returns false.

This gets called when the mode is deactivated, it removes the user task from
the robot

4.74.3.3 virtual void ArMode::help (void) [inline, virtual]

The mode’s help print out... subclass must provide if needed.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.74 ArMode Class Reference 263

This is called as soon as a mode is activated, and should give directions on to
what keys do what and what this mode will do

Reimplemented in ArModeTeleop (p. 271), ArModeUnguardedTeleop
(p. 273), ArModeWander (p. 275), ArModeGripper (p. 267), ArMode-
Camera (p. 265), and ArModeSonar (p. 269).

The documentation for this class was generated from the following files:

• ArMode.h
• ArMode.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

264 Aria Class Documentation

4.75 ArModeCamera Class Reference

Mode for controlling the camera.

#include <ArModes.h>

Inheritance diagram for ArModeCamera::

ArModeCamera

ArMode

Public Methods

• ArModeCamera (ArRobot ∗robot, const char ∗name, char key, char
key2)

Constructor.

• virtual ∼ArModeCamera ()

Destructor.

• virtual void activate (void)

The function called when the mode is activated, subclass must provide.

• virtual void deactivate (void)

The function called when the mode is deactivated, subclass must provide.

• virtual void userTask (void)

The ArMode (p. 260)’s user task, don’t need one, subclass must provide if
needed.

• virtual void help (void)

The mode’s help print out... subclass must provide if needed.

4.75.1 Detailed Description

Mode for controlling the camera.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.75 ArModeCamera Class Reference 265

4.75.2 Member Function Documentation

4.75.2.1 void ArModeCamera::help (void) [virtual]

The mode’s help print out... subclass must provide if needed.

This is called as soon as a mode is activated, and should give directions on to
what keys do what and what this mode will do

Reimplemented from ArMode (p. 262).

The documentation for this class was generated from the following files:

• ArModes.h
• ArModes.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

266 Aria Class Documentation

4.76 ArModeGripper Class Reference

Mode for controlling the gripper.

#include <ArModes.h>

Inheritance diagram for ArModeGripper::

ArModeGripper

ArMode

Public Methods

• ArModeGripper (ArRobot ∗robot, const char ∗name, char key, char
key2)

Constructor.

• virtual ∼ArModeGripper ()

Destructor.

• virtual void activate (void)

The function called when the mode is activated, subclass must provide.

• virtual void deactivate (void)

The function called when the mode is deactivated, subclass must provide.

• virtual void userTask (void)

The ArMode (p. 260)’s user task, don’t need one, subclass must provide if
needed.

• virtual void help (void)

The mode’s help print out... subclass must provide if needed.

4.76.1 Detailed Description

Mode for controlling the gripper.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.76 ArModeGripper Class Reference 267

4.76.2 Member Function Documentation

4.76.2.1 void ArModeGripper::help (void) [virtual]

The mode’s help print out... subclass must provide if needed.

This is called as soon as a mode is activated, and should give directions on to
what keys do what and what this mode will do

Reimplemented from ArMode (p. 262).

The documentation for this class was generated from the following files:

• ArModes.h
• ArModes.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

268 Aria Class Documentation

4.77 ArModeSonar Class Reference

Mode for displaying the sonar.

#include <ArModes.h>

Inheritance diagram for ArModeSonar::

ArModeSonar

ArMode

Public Methods

• ArModeSonar (ArRobot ∗robot, const char ∗name, char key, char
key2)

Constructor.

• virtual ∼ArModeSonar ()

Destructor.

• virtual void activate (void)

The function called when the mode is activated, subclass must provide.

• virtual void deactivate (void)

The function called when the mode is deactivated, subclass must provide.

• virtual void userTask (void)

The ArMode (p. 260)’s user task, don’t need one, subclass must provide if
needed.

• virtual void help (void)

The mode’s help print out... subclass must provide if needed.

4.77.1 Detailed Description

Mode for displaying the sonar.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.77 ArModeSonar Class Reference 269

4.77.2 Member Function Documentation

4.77.2.1 void ArModeSonar::help (void) [virtual]

The mode’s help print out... subclass must provide if needed.

This is called as soon as a mode is activated, and should give directions on to
what keys do what and what this mode will do

Reimplemented from ArMode (p. 262).

The documentation for this class was generated from the following files:

• ArModes.h
• ArModes.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

270 Aria Class Documentation

4.78 ArModeTeleop Class Reference

Mode for teleoping the robot with joystick + keyboard.

#include <ArModes.h>

Inheritance diagram for ArModeTeleop::

ArModeTeleop

ArMode

Public Methods

• ArModeTeleop (ArRobot ∗robot, const char ∗name, char key, char
key2)

Constructor.

• virtual ∼ArModeTeleop ()

Destructor.

• virtual void activate (void)

The function called when the mode is activated, subclass must provide.

• virtual void deactivate (void)

The function called when the mode is deactivated, subclass must provide.

• virtual void help (void)

The mode’s help print out... subclass must provide if needed.

• virtual void userTask (void)

The ArMode (p. 260)’s user task, don’t need one, subclass must provide if
needed.

4.78.1 Detailed Description

Mode for teleoping the robot with joystick + keyboard.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.78 ArModeTeleop Class Reference 271

4.78.2 Member Function Documentation

4.78.2.1 void ArModeTeleop::help (void) [virtual]

The mode’s help print out... subclass must provide if needed.

This is called as soon as a mode is activated, and should give directions on to
what keys do what and what this mode will do

Reimplemented from ArMode (p. 262).

The documentation for this class was generated from the following files:

• ArModes.h
• ArModes.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

272 Aria Class Documentation

4.79 ArModeUnguardedTeleop Class Reference

Mode for teleoping the robot with joystick + keyboard.

#include <ArModes.h>

Inheritance diagram for ArModeUnguardedTeleop::

ArModeUnguardedTeleop

ArMode

Public Methods

• ArModeUnguardedTeleop (ArRobot ∗robot, const char ∗name, char
key, char key2)

Constructor.

• virtual ∼ArModeUnguardedTeleop ()

Destructor.

• virtual void activate (void)

The function called when the mode is activated, subclass must provide.

• virtual void deactivate (void)

The function called when the mode is deactivated, subclass must provide.

• virtual void help (void)

The mode’s help print out... subclass must provide if needed.

• virtual void userTask (void)

The ArMode (p. 260)’s user task, don’t need one, subclass must provide if
needed.

4.79.1 Detailed Description

Mode for teleoping the robot with joystick + keyboard.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.79 ArModeUnguardedTeleop Class Reference 273

4.79.2 Member Function Documentation

4.79.2.1 void ArModeUnguardedTeleop::help (void) [virtual]

The mode’s help print out... subclass must provide if needed.

This is called as soon as a mode is activated, and should give directions on to
what keys do what and what this mode will do

Reimplemented from ArMode (p. 262).

The documentation for this class was generated from the following files:

• ArModes.h
• ArModes.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

274 Aria Class Documentation

4.80 ArModeWander Class Reference

Mode for wandering around.

#include <ArModes.h>

Inheritance diagram for ArModeWander::

ArModeWander

ArMode

Public Methods

• ArModeWander (ArRobot ∗robot, const char ∗name, char key, char
key2)

Constructor.

• virtual ∼ArModeWander ()

Destructor.

• virtual void activate (void)

The function called when the mode is activated, subclass must provide.

• virtual void deactivate (void)

The function called when the mode is deactivated, subclass must provide.

• virtual void help (void)

The mode’s help print out... subclass must provide if needed.

• virtual void userTask (void)

The ArMode (p. 260)’s user task, don’t need one, subclass must provide if
needed.

4.80.1 Detailed Description

Mode for wandering around.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.80 ArModeWander Class Reference 275

4.80.2 Member Function Documentation

4.80.2.1 void ArModeWander::help (void) [virtual]

The mode’s help print out... subclass must provide if needed.

This is called as soon as a mode is activated, and should give directions on to
what keys do what and what this mode will do

Reimplemented from ArMode (p. 262).

The documentation for this class was generated from the following files:

• ArModes.h
• ArModes.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

276 Aria Class Documentation

4.81 ArModule Class Reference

Dynamicly loaded module base class, read warning in more.

#include <ArModule.h>

Public Methods

• ArModule ()

Constructor.

• virtual ∼ArModule ()

Destructor.

• virtual bool init (ArRobot ∗robot, void ∗argument=NULL)=0

Initialize the module. The module should use the supplied ArRobot (p. 362)
pointer.

• virtual bool exit ()=0

Close down the module and have it exit.

• ArRobot ∗ getRobot ()

Get the ArRobot (p. 362) pointer the module should be using.

• void setRobot (ArRobot ∗robot)

Set the ArRobot (p. 362) pointer.

Protected Attributes

• ArRobot ∗ myRobot

Stored ArRobot (p. 362) pointer that the module should use.

4.81.1 Detailed Description

Dynamicly loaded module base class, read warning in more.

Right now only one module’s init will be called, that is the first one, its a bug
that I just don’t have time to fix at the moment. I’ll get to it when I have time
or if someone needs it... someone else wrote this code so it’ll take me a little
longer to fix it.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.81 ArModule Class Reference 277

This class defines a dyanicmly loaded module of code. This is usefull for an
application to load piece of code that it does not know about. The ArModule
defines and interface in which to invoke that piece of code that the program does
not know about. For instance, a module could contain an ArAction (p. 39) and
the modules init() (p. 277) could instantiate the ArAction (p. 39) and add it
to the supplied ArRobot (p. 362). The init() (p. 277) takes a reference to an
ArRobot (p. 362). The module should use that robot for its purposes. If the
module wants to use more robots, assuming there are multiple robots, it can use
Aria::getRobotList() (p. 222) to find all the ArRobot (p. 362) instantiated.
The module should do all its clean up in exit() (p. 276).

The user should derive their own class from ArModule and implement the init()
(p. 277) and exit() (p. 276) functions. The users code should always clean up
when exit() (p. 276) is called. exit() (p. 276) is called right before the module
(dynamic library .dll/.so) is closed and removed from the program.

The macro ARDEF MODULE() must be called within the .cpp file of the users
module. A global instance of the users module must be defined and a reference
to that instance must be passed to ARDEF MODULE(). This allows the Ar-
ModuleLoader (p. 279) to find the users module class and invoke it.

One thing to note about the use of code wrapped in ArModules and staticly
linking in that code. To be able to staticly link .cpp files which contain an
ArModule, the define of ARIA STATIC should be defined. This will cause
the ARDEF MODULE() to do nothing. If it defined its normal functions and
variables, the linker would fail to staticly link in multiple modules since they all
have symbols with the same name.

See also ArModuleLoader (p. 279) to see how to load an ArModule into a
program.

See also the example programs simpleMod.cpp and simpleModule.cpp. For a
more complete example, see the example programs joydriveActionMod.cpp and
joydriveActionModule.cpp.

4.81.2 Member Function Documentation

4.81.2.1 virtual bool ArModule::init (ArRobot ∗ robot, void ∗
argument = NULL) [pure virtual]

Initialize the module. The module should use the supplied ArRobot (p. 362)
pointer.

Parameters:
robot Robot this module should attach to, can be NULL for none, so make

sure you handle that case

modArgument an optional string argument to the module, this defaults

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

278 Aria Class Documentation

to NULL, you’ll need to cast this to whatever you want it to be...
you’ll want to document this clearly with the module

The documentation for this class was generated from the following files:

• ArModule.h
• ArModule.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.82 ArModuleLoader Class Reference 279

4.82 ArModuleLoader Class Reference

Dynamic ArModule (p. 276) loader.

#include <ArModuleLoader.h>

Public Types

• enum Status { STATUS SUCCESS = 0, STATUS ALREADY -
LOADED, STATUS FAILED OPEN, STATUS INVALID, STA-
TUS INIT FAILED, STATUS EXIT FAILED, STATUS NOT -
FOUND }

Static Public Methods

• Status load (const char ∗modName, ArRobot ∗robot, void ∗mod-
Argument=NULL, bool quiet=false)

Load an ArModule (p. 276).

• Status reload (const char ∗modName, ArRobot ∗robot, void ∗mod-
Argument=NULL, bool quiet=false)

Close and then reload an ArModule (p. 276).

• Status close (const char ∗modName, bool quiet=false)

Close an ArModule (p. 276).

• void closeAll ()

Close all open ArModule (p. 276).

4.82.1 Detailed Description

Dynamic ArModule (p. 276) loader.

The ArModuleLoader is used to load ArModules into a program and invoke
them.

See also ArModule (p. 276) to see how to define an ArModule (p. 276).

See also the example programs simpleMod.cpp and simpleModule.cpp. For a
more complete example, see the example programs joydriveActionMod.cpp and
joydriveActionModule.cpp.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

280 Aria Class Documentation

4.82.2 Member Enumeration Documentation

4.82.2.1 enum ArModuleLoader::Status

Enumeration values:
STATUS SUCCESS Load succeded.

STATUS ALREADY LOADED Module already loaded.

STATUS FAILED OPEN Could not find or open the module.

STATUS INVALID Invalid module file format.

STATUS INIT FAILED The module failed its init stage.

STATUS EXIT FAILED The module failed its exit stage.

STATUS NOT FOUND The module was not found.

4.82.3 Member Function Documentation

4.82.3.1 ArModuleLoader::Status ArModuleLoader::close (const
char ∗ modName, bool quiet = false) [static]

Close an ArModule (p. 276).

Calls ArModule::exit() (p. 276) on the module, then closes the library.

Parameters:
modName filename of the module without the extension (.dll or .so)

quiet whether to print out a message if this fails or not, defaults to false

4.82.3.2 ArModuleLoader::Status ArModuleLoader::load (const
char ∗ modName, ArRobot ∗ robot, void ∗ modArgument
= NULL, bool quiet = false) [static]

Load an ArModule (p. 276).

THIS ONLY LOADS one init on the module right now, if its called again it’ll
load the same init over. I’ll fix it later... read the more verbose description in
ArModule.h.

Takes a string name of the module which is just the file name of the module
without the extension (.dll or .so). It will figure out the correct extension
based on wheter its a Linux or Windows build. It will also uses the standard
operating systems ability to find the library. So the library must be located
within the PATH variable for Windows and the LD LIBRARY PATH for Linux.
You can also just give the absolute path to the library, or the relative path from
the directory the program was started in (ie ./simpleMod). The ArModule

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.82 ArModuleLoader Class Reference 281

(p. 276) will be passed the ArRobot (p. 362) reference that load() (p. 280)
takes. This is the ArRobot (p. 362) that the ArModule (p. 276) will use for
its processing.

Parameters:
modName filename of the module without the extension (.dll or .so)

robot ArRobot (p. 362) reference which the module is to use, this can be
NULL

modArgument A void pointer argument to pass to the module, if its a
const value you’ll need to cast it to a non-const value to get it to work
(for example if you were using a constant string). This value defaults
to NULL.

quiet whether to print out a message if this fails or not, defaults to false

4.82.3.3 ArModuleLoader::Status ArModuleLoader::reload (const
char ∗ modName, ArRobot ∗ robot, void ∗ modArgument
= NULL, bool quiet = false) [static]

Close and then reload an ArModule (p. 276).

reload() (p. 281) is similiar to load() (p. 280), except that it will call close()
(p. 280) on the module and then call load() (p. 280).

Parameters:
modName filename of the module without the extension (.dll or .so)

The documentation for this class was generated from the following files:

• ArModuleLoader.h
• ArModuleLoader.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

282 Aria Class Documentation

4.83 ArMutex Class Reference

Mutex wrapper class.

#include <ArMutex.h>

Public Types

• enum Status { STATUS FAILED INIT = 1, STATUS FAILED,
STATUS ALREADY LOCKED }

Public Methods

• ArMutex ()
Constructor.

• virtual ∼ArMutex ()
Destructor.

• virtual int lock ()
Lock the mutex.

• virtual int tryLock ()
Try to lock the mutex, but do not block.

• virtual int unlock ()
Unlock the mutex, allowing another thread to obtain the lock.

• virtual const char ∗ getError (int messageNumber) const
Get a human readable error message from an error code.

• virtual MutexType & getMutex ()
Get a reference to the underlying mutex variable.

4.83.1 Detailed Description

Mutex wrapper class.

This class wraps the operating systems mutex functions. It allows mutualy
exclusive access to a critical section. This is extremely usefull for multiple
threads which want to use the same variable. ArMutex simply uses the POSIX
pthread interface in an object oriented manner. It also applies the same concept
to Windows using Windows own abilities to restrict access to critical sections.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.83 ArMutex Class Reference 283

4.83.2 Member Enumeration Documentation

4.83.2.1 enum ArMutex::Status

Enumeration values:
STATUS FAILED INIT Failed to initialize.

STATUS FAILED General failure.

STATUS ALREADY LOCKED Mutex already locked.

4.83.3 Member Function Documentation

4.83.3.1 int ArMutex::lock () [virtual]

Lock the mutex.

Lock the mutex. This function will block until no other thread has this mutex
locked. If it returns 0, then it obtained the lock and the thread is free to use
the critical section that this mutex protects. Else it returns an error code. See
getError() (p. 282).

4.83.3.2 int ArMutex::tryLock () [virtual]

Try to lock the mutex, but do not block.

Try to lock the mutex. This function will not block if another thread has the
mutex locked. It will return instantly if that is the case. It will return STATUS -
ALREADY LOCKED if another thread has the mutex locked. If it obtains the
lock, it will return 0.

The documentation for this class was generated from the following files:

• ArMutex.h
• ArMutex LIN.cpp
• ArMutex WIN.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

284 Aria Class Documentation

4.84 ArNetServer Class Reference

Class for running a simple net server to send/recv commands via text.

#include <ArNetServer.h>

Public Methods

• ArNetServer ()
Constructor.

• ∼ArNetServer ()
Destructor.

• bool open (ArRobot ∗robot, unsigned int port, const char ∗password,
bool multipleClients)

Initializes the server.

• void close (void)
Closes the server.

• bool addCommand (const char ∗command, ArFunctor3< char ∗∗, int,
ArSocket ∗> ∗functor, const char ∗help)

Adds a new command.

• bool remCommand (const char ∗command)
Removes a command.

• void sendToAllClients (const char ∗str,...)
Sends the given string to all the clients.

• void sendToAllClientsPlain (const char ∗str)
Sends the given string to all the clients, no varargs, wrapper for java.

• bool isOpen (void)
Sees if the server is running and open.

• void runOnce (void)
the internal sync task we use for our loop.

• void internalGreeting (ArSocket ∗socket)
the internal function that gives the greeting message.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.84 ArNetServer Class Reference 285

• void internalHelp (ArSocket ∗socket)

The internal function that does the help.

• void internalHelp (char ∗∗argv, int argc, ArSocket ∗socket)

The internal function for the help cb.

• void internalEcho (char ∗∗argv, int argc, ArSocket ∗socket)

The internal function for echo.

• void internalQuit (char ∗∗argv, int argc, ArSocket ∗socket)

The internal function for closing this connection.

• void internalShutdown (char ∗∗argv, int argc, ArSocket ∗socket)

The internal function for shutting down.

• void parseCommandOnSocket (ArArgumentBuilder ∗args, Ar-
Socket ∗socket)

The internal function for parsing a command on a socket.

4.84.1 Detailed Description

Class for running a simple net server to send/recv commands via text.

This class is for running a simple net server which will have a list of commands
to use and a fairly simple set of interactions... Start the server with the open
function, add commands with the addCommand function and remove commands
with remCommand, and close the server with the close function.

4.84.2 Member Function Documentation

4.84.2.1 bool ArNetServer::addCommand (const char ∗ command,
ArFunctor3< char ∗∗, int, ArSocket ∗> ∗ functor, const
char ∗ help)

Adds a new command.

This adds a command to the list, when the command is given the broken up
argv and argc are given along with the socket it came from (so that acks can
occur)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

286 Aria Class Documentation

4.84.2.2 bool ArNetServer::open (ArRobot ∗ robot, unsigned int
port, const char ∗ password, bool multipleClients)

Initializes the server.

Open the server, if you supply a robot this will run in the robots attached, if
you do not supply a robot then it will be open and you’ll have to call runOnce
yourself (this is only recommended for advanced users)

Parameters:
robot the robot that this should be attached to and run in the sync task

of or NULL not to run in any robot’s task

port the port to start up the service on

password the password needed to use the service

multipleClients if false only one client is allowed to connect, if false mul-
tiple clients are allowed to connect or just one

Returns:
true if the server could be started, false otherwise

4.84.2.3 bool ArNetServer::remCommand (const char ∗ command)

Removes a command.

Parameters:
command the command to remove

Returns:
true if the command was there to remove, false otherwise

4.84.2.4 void ArNetServer::sendToAllClients (const char ∗ str, ...)

Sends the given string to all the clients.

This sends the given string to all the clients, this string cannot be more than
2048 number of bytes

The documentation for this class was generated from the following files:

• ArNetServer.h
• ArNetServer.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.85 ArP2Arm Class Reference 287

4.85 ArP2Arm Class Reference

Arm Control class.

#include <ArP2Arm.h>

Public Types

• enum State { SUCCESS, ALREADY INITED, NOT INITED,
ROBOT NOT SETUP, NO ARM FOUND, COMM FAILED,
COULD NOT OPEN PORT, COULD NOT SET UP PORT,
ALREADY CONNECTED, NOT CONNECTED, INVALID -
JOINT, INVALID POSITION }

General error conditions possible from most of the arm related functions.

• enum PacketType { StatusPacket, InfoPacket }
Type of arm packet identifiers. Used in ArP2Arm::setPacketCB()
(p. 289).

• enum StatusType { StatusOff = 0, StatusSingle = 1, Status-
Continuous = 2 }

Type of status packets to request for. Used in ArP2Arm::requestStatus()
(p. 297).

Public Methods

• ArP2Arm ()
Constructor.

• virtual ∼ArP2Arm ()
Destructor.

• void setRobot (ArRobot ∗robot)
Set the robot to use to talk to the arm.

• virtual State init ()
Init the arm class.

• virtual State uninit ()
Uninit the arm class.

• virtual State powerOn (bool doWait=true)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

288 Aria Class Documentation

Power on the arm.

• virtual State powerOff ()

Power off the arm.

• virtual State requestInfo ()

Request the arm info packet.

• virtual State requestStatus (StatusType status)

Request the arm status packet.

• virtual State requestInit ()

Request arm initialization.

• virtual State checkArm (bool waitForResponse=true)

Check to see if the arm is still connected.

• virtual State home (int joint=-1)

Home the arm.

• virtual State park ()

Home the arm and power if off.

• virtual State moveTo (int joint, float pos, unsigned char vel=0)

Move a joint to a position in degrees.

• virtual State moveToTicks (int joint, unsigned char pos)

Move a joint to a position in low level arm controller ticks.

• virtual State moveStep (int joint, float pos, unsigned char vel=0)

Move a joint step degrees.

• virtual State moveStepTicks (int joint, signed char pos)

Move a joint step ticks.

• virtual State moveVel (int joint, int vel)

Set the joint to move at the given velocity.

• virtual State stop ()

Stop the arm.

• virtual State setAutoParkTimer (int waitSecs)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.85 ArP2Arm Class Reference 289

Set the auto park timer value.

• virtual State setGripperParkTimer (int waitSecs)
Set the gripper park timer value.

• virtual void setStoppedCB (ArFunctor ∗func)
Set the arm stopped callback.

• virtual void setPacketCB (ArFunctor1< PacketType > ∗func)
set the arm packet callback.

• virtual std::string getArmVersion ()
Get the arm version.

• virtual float getJointPos (int joint)
Get the joints position in degrees.

• virtual unsigned char getJointPosTicks (int joint)
Get the joints position in ticks.

• virtual bool getMoving (int joint=-1)
Check to see if the arm is moving.

• virtual bool isPowered ()
Check to see if the arm is powered.

• virtual bool isGood ()
Check to see if the arm is communicating.

• virtual int getStatus ()
Get the two byts of status info from P2OS.

• virtual ArTime getLastStatusTime ()
Get when the last arm status packet came in.

• virtual ArRobot ∗ getRobot ()
Get the robot that the arm is on.

• virtual P2ArmJoint ∗ getJoint (int joint)
Get the joints data structure.

• virtual bool convertDegToTicks (int joint, float pos, unsigned char
∗ticks)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

290 Aria Class Documentation

Converts degrees to low level arm controller ticks.

• virtual bool convertTicksToDeg (int joint, unsigned char pos, float
∗degrees)

Converts low level arm controller ticks to degrees.

Static Public Attributes

• const int ArmJoint1 = 0x1
Bit for joint 1 in arm status byte.

• const int ArmJoint2 = 0x2
Bit for joint 2 in arm status byte.

• const int ArmJoint3 = 0x4
Bit for joint 3 in arm status byte.

• const int ArmJoint4 = 0x8
Bit for joint 4 in arm status byte.

• const int ArmJoint5 = 0x10
Bit for joint 5 in arm status byte.

• const int ArmJoint6 = 0x20
Bit for joint 6 in arm status byte.

• const int ArmGood = 0x100
Bit for arm good state in arm status byte.

• const int ArmInited = 0x200
Bit for arm initialized in arm status byte.

• const int ArmPower = 0x400
Bit for arm powered on in arm status byte.

• const int ArmHoming = 0x800
Bit for arm homing in arm status byte.

• int NumJoints = 6
Number of joints that the arm has.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.85 ArP2Arm Class Reference 291

4.85.1 Detailed Description

Arm Control class.

ArP2Arm is the interface to the AROS/P2OS-based Pioneer 2 Arm servers.
The P2 Arm is attached to the robot’s microcontroller via an auxiliary serial
port.

To use ArmP2, you must first set up an ArRobot (p. 362) and have it connect
with the robot. The ArRobot (p. 362) needs to be run so that it reads and
writes packets to and from server. The easiest way is ArRobot::runAsync()
(p. 408) which runs the ArRobot (p. 362) in its own thread.

Then call ArP2Arm::setRobot() (p. 287) with ArRobot (p. 362), and finally
initialized with ArmP2::init(). Once initialized, use the various ArP2Arm meth-
ods to power the P2 Arm servos, move joints, and so on.

For simple examples on how to use ArP2Arm, look in the Aria
(p. 221)/examples directory for P2ArmSimple.cpp and P2ArmJoydrive.cpp.

See the Aria (p. 221) documentation on how to use Aria (p. 221).

4.85.2 Member Enumeration Documentation

4.85.2.1 enum ArP2Arm::PacketType

Type of arm packet identifiers. Used in ArP2Arm::setPacketCB() (p. 289).

Enumeration values:
StatusPacket The status packet type.

InfoPacket The info packet type.

4.85.2.2 enum ArP2Arm::State

General error conditions possible from most of the arm related functions.

Enumeration values:
SUCCESS Succeded.

ALREADY INITED The class is already initialized.

NOT INITED The class is not initialized.

ROBOT NOT SETUP The ArRobot (p. 362) class is not setup prop-
erly.

NO ARM FOUND The arm can not be found.

COMM FAILED Communications has failed.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

292 Aria Class Documentation

COULD NOT OPEN PORT Could not open the communications
port.

COULD NOT SET UP PORT Could not setup the communications
port.

ALREADY CONNECTED Already connected to the arm.

NOT CONNECTED Not connected with the arm, connect first.

INVALID JOINT Invalid joint specified.

INVALID POSITION Invalid position specified.

4.85.2.3 enum ArP2Arm::StatusType

Type of status packets to request for. Used in ArP2Arm::requestStatus()
(p. 297).

Enumeration values:
StatusOff Stop sending status packets.

StatusSingle Send a single status packets.

StatusContinuous Send continous packets. Once every 100ms.

4.85.3 Member Function Documentation

4.85.3.1 ArP2Arm::State ArP2Arm::checkArm (bool
waitForResponse = true) [virtual]

Check to see if the arm is still connected.

Requests that P2OS checks to see if the arm is still alive and immediately exits.
This is not a full init and differs that P2OS will still accept arm commands and
the arm will not be parked. If P2OS fails to find the arm it will change the
status byte accordingly and stop accepting arm related commands except for
init commands. If the parameter waitForResponse is true then checkArm()
(p. 292) will wait the appropriate amoutn of time and check the status of the
arm. If you wish to do the waiting else where the arm check sequence takes
about 200ms, so the user should wait 300ms then send a ArP2Arm::request-
Status() (p. 297) to get the results of the check arm request. Since there is a
very noticable time delay, the user should use the ArP2Arm::setPacketCB()
(p. 289) to set a callback so the user knows when the packet has been recieved.

This can be usefull for telling if the arm is still alive. The arm controller can
be powered on/off seperately from the robot.

Parameters:
waitForResponse cause the function to block until their is a response

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.85 ArP2Arm Class Reference 293

See also:
requestInit (p. 296) , setPacketCB (p. 289)

4.85.3.2 ArP2Arm::State ArP2Arm::home (int joint = -1)
[virtual]

Home the arm.

Tells the arm to go to the home position. While the arm is homing, the status
byte will reflect it with the ArP2Arm::ArmHoming (p. 290) flag. If joint is
set to -1, then all the joints will be homed at a safe speed. If a single joint is
specified, that joint will be told to go to its home position at the current speed
its set at.

Parameters:
joint home only that joint

4.85.3.3 ArP2Arm::State ArP2Arm::init (void) [virtual]

Init the arm class.

Initialize the P2 Arm class. This must be called before anything else. The
setRobot() (p. 287) must be called to let ArP2Arm know what instance of an
ArRobot (p. 362) to use. It talks to the robot and makes sure that there is an
arm on it and it is in a good condition. The AROS/P2OS arm servers take care
of AUX port serial communications with the P2 Arm controller.

4.85.3.4 ArP2Arm::State ArP2Arm::moveStep (int joint, float pos,
unsigned char vel = 0) [virtual]

Move a joint step degrees.

Step the joint pos degrees from its current position at the given speed. If vel is
0, then the currently set speed will be used.

See ArP2Arm::moveToTicks() (p. 295) for a description of how positions are
defined. See ArP2Arm::moveVel() (p. 295) for a description of how speeds
are defined.

Parameters:
joint the joint to move
pos the position in degrees to step
vel the speed at which to move. 0 will use the currently set speed

See also:
moveTo (p. 294) , moveVel (p. 295)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

294 Aria Class Documentation

4.85.3.5 ArP2Arm::State ArP2Arm::moveStepTicks (int joint,
signed char pos) [virtual]

Move a joint step ticks.

Move the joint pos ticks from its current position. A tick is the arbitrary position
value that the arm controller uses. The arm controller uses a single unsigned
byte to represent all the possible positions in the range of the servo for each
joint. So the range of ticks is 0-255 which is mapped to the physical range of
the servo. Due to the design of the arm, certain joints range are limited by the
arm itself. P2OS will bound the position to physical range of each joint. This
is a lower level of controlling the arm position than using ArP2Arm::move-
To() (p. 294). ArP2Arm::moveStep() (p. 293) uses a conversion factor which
converts degrees to ticks.

Parameters:
joint the joint to move

pos the position, in ticks, to move to

See also:
moveStep (p. 293)

4.85.3.6 ArP2Arm::State ArP2Arm::moveTo (int joint, float pos,
unsigned char vel = 0) [virtual]

Move a joint to a position in degrees.

Move the joint to the position at the given speed. If vel is 0, then the currently
set speed will be used. The position is in degrees. Each joint has about a +-90
degree range, but they all differ due to the design.

See ArP2Arm::moveToTicks() (p. 295) for a description of how positions are
defined. See ArP2Arm::moveVel() (p. 295) for a description of how speeds
are defined.

Parameters:
joint the joint to move

pos the position in degrees to move to

vel the speed at which to move. 0 will use the currently set speed

See also:
moveToTicks (p. 295) , moveVel (p. 295)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.85 ArP2Arm Class Reference 295

4.85.3.7 ArP2Arm::State ArP2Arm::moveToTicks (int joint,
unsigned char pos) [virtual]

Move a joint to a position in low level arm controller ticks.

Move the joint to the given position in ticks. A tick is the arbitrary position
value that the arm controller uses. The arm controller uses a single unsigned
byte to represent all the possible positions in the range of the servo for each
joint. So the range of ticks is 0-255 which is mapped to the physical range of
the servo. Due to the design of the arm, certain joints range are limited by the
arm itself. P2OS will bound the position to physical range of each joint. This
is a lower level of controlling the arm position than using ArP2Arm::move-
To() (p. 294). ArP2Arm::moveTo() (p. 294) uses a conversion factor which
converts degrees to ticks.

Parameters:
joint the joint to move
pos the position, in ticks, to move to

See also:
moveTo (p. 294)

4.85.3.8 ArP2Arm::State ArP2Arm::moveVel (int joint, int vel)
[virtual]

Set the joint to move at the given velocity.

Set the joints velocity. The arm controller has no way of controlling the speed of
the servos in the arm. So to control the speed of the arm, P2OS will incrementaly
send a string of position commands to the arm controller to get the joint to move
to its destination. To vary the speed, the amount of time to wait between each
point in the path is varied. The velocity parameter is simply the number of
milliseconds to wait between each point in the path. 0 is the fastest and 255 is
the slowest. A reasonable range is around 10-40.

Parameters:
joint the joint to move
vel the velocity to move at

4.85.3.9 ArP2Arm::State ArP2Arm::powerOff () [virtual]

Power off the arm.

Powers off the arm. This should only be called when the arm is in a good position
to power off. Due to the design, it will go limp when the power is turned off.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

296 Aria Class Documentation

A more safe way to power off the arm is to use the ArP2Arm::park() (p. 288)
function. Which will home the arm, then power if off.

See also:
park (p. 288)

4.85.3.10 ArP2Arm::State ArP2Arm::powerOn (bool doSleep =
true) [virtual]

Power on the arm.

Powers on the arm. The arm will shake for up to 2 seconds after powering on. If
the arm is told to move before it stops shaking, that vibration can be amplified
by moving. The default is to wait the 2 seconds for the arm to settle down.

Parameters:
doSleep if true, sleeps 2 seconds to wait for the arm to stop shaking

4.85.3.11 ArP2Arm::State ArP2Arm::requestInfo () [virtual]

Request the arm info packet.

Requests the arm info packet from P2OS and immediately returns. This packet
will be sent during the next 100ms cycle of P2OS. Since there is a very noticable
time delay, the user should use the ArP2Arm::setPacketCB() (p. 289) to set
a callback so the user knows when the packet has been recieved.

See also:
setPacketCB (p. 289)

4.85.3.12 ArP2Arm::State ArP2Arm::requestInit () [virtual]

Request arm initialization.

Requests that P2OS initialize the arm and immediately returns. The arm ini-
tialization procedure takes about 700ms to complete and a little more time for
the status information to be relayed back to the client. Since there is a very not-
icable time delay, the user should use the ArP2Arm::setPacketCB() (p. 289)
to set a callback so the user knows when the arm info packet has been recieved.
Then wait about 800ms, and send a ArP2Arm::requestStatus() (p. 297) to
get the results of the init request. While the init is proceding, P2OS will ignore
all arm related commands except requests for arm status and arm info packets.

ArP2Arm::checkArm() (p. 292) can be used to periodicly check to make sure
that the arm controller is still alive and responding.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.85 ArP2Arm Class Reference 297

See also:
checkArm (p. 292) , setPacketCB (p. 289)

4.85.3.13 ArP2Arm::State ArP2Arm::requestStatus (StatusType
status) [virtual]

Request the arm status packet.

Requests the arm status packet from P2OS and immediately returns. This
packet will be sent during the next 100ms cycle of P2OS. Since there is a
very noticable time delay, the user should use the ArP2Arm::setPacket-
CB() (p. 289) to set a callback so the user knows when the packet has been
recieved.

See also:
setPacketCB (p. 289)

4.85.3.14 ArP2Arm::State ArP2Arm::setAutoParkTimer (int
waitSecs) [virtual]

Set the auto park timer value.

P2OS will automaticly park the arm if it gets no arm related packets after wait-
Secs. This is to help protect the arm when the program looses connection with
P2OS. Set the value to 0 to disable this timer. Default wait is 10 minutes.

Parameters:
waitSecs seconds to wait till parking the arm when idle

4.85.3.15 ArP2Arm::State ArP2Arm::setGripperParkTimer (int
waitSecs) [virtual]

Set the gripper park timer value.

P2OS/AROS automatically park the gripper after its been closed for more than
waitSecs. The gripper servo can overheat and burnout if it is holding something
for more than 10 minutes. Care must be taken to ensure that this does not
happen. If you wish to manage the gripper yourself, you can disable this timer
by setting it to 0.

Parameters:
waitSecs seconds to wait till parking the gripper once it has begun to grip

something

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

298 Aria Class Documentation

4.85.3.16 ArP2Arm::State ArP2Arm::stop () [virtual]

Stop the arm.

Stop the arm from moving. This overrides all other actions except for the arms
initilization sequence.

4.85.3.17 ArP2Arm::State ArP2Arm::uninit () [virtual]

Uninit the arm class.

Uninitialize the arm class. This simply asks the arm to park itself and cleans
up its internal state. To completely uninitialize the P2 Arm itself have the
ArRobot (p. 362) disconnect from P2OS.

The documentation for this class was generated from the following files:

• ArP2Arm.h
• ArP2Arm.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.86 ArPose Class Reference 299

4.86 ArPose Class Reference

The class which represents a position.

#include <ariaUtil.h>

Inheritance diagram for ArPose::

ArPose

ArPoseWithTime

Public Methods

• ArPose (double x=0, double y=0, double th=0)
Constructor, with optional initial values.

• ArPose (const ArPose &pose)
Copy Constructor.

• virtual ∼ArPose ()
Destructor.

• virtual void setPose (double x, double y, double th=0)
Sets the position to the given values.

• virtual void setPose (ArPose position)
Sets the position equal to the given position.

• void setX (double x)
Sets the x position.

• void setY (double y)
Sets the y position.

• void setTh (double th)
Sets the heading.

• void setThRad (double th)
Sets the heading, using radians.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

300 Aria Class Documentation

• double getX (void) const

Gets the x position.

• double getY (void) const

Gets the y position.

• double getTh (void) const

Gets the heading.

• double getThRad (void) const

Gets the heading, in radians.

• void getPose (double ∗x, double ∗y, double ∗th=NULL) const

Gets the whole position in one function call.

• virtual double findDistanceTo (ArPose position) const

Finds the distance from this position to the given position.

• virtual double squaredFindDistanceTo (ArPose position) const

Finds the square distance from this position to the given position.

• virtual double findAngleTo (ArPose position) const

Finds the angle between this position and the given position.

• virtual void log (void) const

Logs the coordinates using ArLog (p. 247).

4.86.1 Detailed Description

The class which represents a position.

This class represents a robot position with heading. The heading defaults to
0, and so does not need to be used (this avoids having 2 types of positions).
Everything in the class is inline so it should be fast.

4.86.2 Constructor & Destructor Documentation

4.86.2.1 ArPose::ArPose (double x = 0, double y = 0, double th =
0) [inline]

Constructor, with optional initial values.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.86 ArPose Class Reference 301

Sets the position with the given values, can be used with no variables, with just
x and y, or with x, y, and th

Parameters:
x the position to set the x position to, default of 0

y the position to set the y position to, default of 0

th the position to set the th position to, default of 0

4.86.3 Member Function Documentation

4.86.3.1 virtual double ArPose::findAngleTo (ArPose position)
const [inline, virtual]

Finds the angle between this position and the given position.

Parameters:
position the position to find the angle to

Returns:
the angle to the given position from this instance, in degrees

4.86.3.2 virtual double ArPose::findDistanceTo (ArPose position)
const [inline, virtual]

Finds the distance from this position to the given position.

Parameters:
position the position to find the distance to

Returns:
the distance to the position from this instance

4.86.3.3 void ArPose::getPose (double ∗ x, double ∗ y, double ∗ th
= NULL) const [inline]

Gets the whole position in one function call.

Gets the whole position at once, by giving it 2 or 3 pointers to doubles. If you
give the function a null pointer for a value it won’t try to use the null pointer,
so you can pass in a NULL if you don’t care about that value. Also note that
th defaults to NULL so you can use this with just x and y.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

302 Aria Class Documentation

Parameters:
x a pointer to a double to set the x position to
y a pointer to a double to set the y position to
th a pointer to a double to set the heading to, defaults to NULL

4.86.3.4 virtual void ArPose::setPose (ArPose position) [inline,
virtual]

Sets the position equal to the given position.

Parameters:
position the position value this instance should be set to

4.86.3.5 virtual void ArPose::setPose (double x, double y, double
th = 0) [inline, virtual]

Sets the position to the given values.

Sets the position with the given three values, but the theta does not need to be
given as it defaults to 0.

Parameters:
x the position to set the x position to
y the position to set the y position to
th the position to set the th position to, default of 0

4.86.3.6 virtual double ArPose::squaredFindDistanceTo (ArPose
position) const [inline, virtual]

Finds the square distance from this position to the given position.

This is only here for speed, if you aren’t doing this thousands of times a second
don’t use this one use findDistanceTo

Parameters:
position the position to find the distance to

Returns:
the distance to the position from this instance

The documentation for this class was generated from the following file:

• ariaUtil.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.87 ArPoseWithTime Class Reference 303

4.87 ArPoseWithTime Class Reference

A subclass of pose that also has the time the pose was taken.

#include <ariaUtil.h>

Inheritance diagram for ArPoseWithTime::

ArPoseWithTime

ArPose

4.87.1 Detailed Description

A subclass of pose that also has the time the pose was taken.

The documentation for this class was generated from the following file:

• ariaUtil.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

304 Aria Class Documentation

4.88 ArPriorityResolver Class Reference

(Default resolver), takes the action list and uses the priority to resolve.

#include <ArPriorityResolver.h>

Inheritance diagram for ArPriorityResolver::

ArPriorityResolver

ArResolver

Public Methods

• ArPriorityResolver ()
Constructor.

• virtual ∼ArPriorityResolver ()
Destructor.

4.88.1 Detailed Description

(Default resolver), takes the action list and uses the priority to resolve.

This is the default resolver for ArRobot (p. 362), meaning if you don’t do a
non-normal init on the robot, or a setResolver, you’ll have one these.

The documentation for this class was generated from the following files:

• ArPriorityResolver.h
• ArPriorityResolver.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.89 ArPTZ Class Reference 305

4.89 ArPTZ Class Reference

Base class which handles the PTZ cameras.

#include <ArPTZ.h>

Inheritance diagram for ArPTZ::

ArPTZ

ArAMPTU ArDPPTU ArSonyPTZ ArVCC4

Public Methods

• ArPTZ (ArRobot ∗robot)
• virtual ∼ArPTZ ()

Destructor.

• virtual bool init (void)=0
Initializes the camera.

• virtual bool pan (int degrees)=0
Pans to the given degrees.

• virtual bool panRel (int degrees)=0
Pans relative to current position by given degrees.

• virtual bool tilt (int degrees)=0
Tilts to the given degrees.

• virtual bool tiltRel (int degrees)=0
Tilts relative to the current position by given degrees.

• virtual bool panTilt (int degreesPan, int degreesTilt)=0
Pans and tilts to the given degrees.

• virtual bool panTiltRel (int degreesPan, int degreesTilt)=0
Pans and tilts relatives to the current position by the given degrees.

• virtual bool canZoom (void) const=0
Returns true if camera can zoom (or rather, if it is controlled by this).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

306 Aria Class Documentation

• virtual bool zoom (int zoomValue)
Zooms to the given value.

• virtual bool zoomRel (int zoomValue)
Zooms relative to the current value, by the given value.

• virtual int getPan (void) const=0
The angle the camera was last told to pan to.

• virtual int getTilt (void) const=0
The angle the camera was last told to tilt to.

• virtual int getZoom (void) const
The value the camera was last told to zoom to.

• virtual bool canGetRealPanTilt (void) const
If this driver can tell the real pan/tilt angle.

• virtual int getRealPan (void) const
The angle the camera says its at.

• virtual int getRealTilt (void) const
The angle the camera says its at.

• virtual bool canGetRealZoom (void) const
If this driver can tell the real zoom.

• virtual int getRealZoom (void) const
The zoom the camera says its at.

• virtual int getMaxPosPan (void) const=0
Gets the highest positive degree the camera can pan to.

• virtual int getMaxNegPan (void) const=0
Gets the lowest negative degree the camera can pan to.

• virtual int getMaxPosTilt (void) const=0
Gets the highest positive degree the camera can tilt to.

• virtual int getMaxNegTilt (void) const=0
Gets the lowest negative degree the camera can tilt to.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.89 ArPTZ Class Reference 307

• virtual int getMaxZoom (void) const

Gets the maximum value for the zoom on this camera.

• virtual int getMinZoom (void) const

Gets the lowest value for the zoom on this camera.

• virtual bool setDeviceConnection (ArDeviceConnection
∗connection, bool driveFromRobotLoop=true)

Sets the device connection to be used by this PTZ camera, if set this camera
will send commands via this connection, otherwise its via robot.

• virtual ArDeviceConnection ∗ getDeviceConnection (void)

Gets the device connection used by this PTZ camera.

• virtual bool setAuxPort (int auxPort)

Sets the aux port on the robot to be used to communicate with this device.

• virtual int getAuxPort (void)

Gets the port the device is set to communicate on.

• virtual ArBasePacket ∗ readPacket (void)

Reads a packet from the device connection, MUST NOT BLOCK.

• virtual bool sendPacket (ArBasePacket ∗packet)

Sends a given packet to the camera (via robot or serial port, depending).

• virtual bool packetHandler (ArBasePacket ∗packet)

Handles a packet that was read from the device.

• virtual bool robotPacketHandler (ArRobotPacket ∗packet)

Handles a packet that was read by the robot.

• virtual void connectHandler (void)

Internal, attached to robot, inits the camera when robot connects.

• virtual void sensorInterpHandler (void)

Internal, for attaching to the robots sensor interp to read serial port.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

308 Aria Class Documentation

4.89.1 Detailed Description

Base class which handles the PTZ cameras.

This class is mainly concerned with making all the cameras look the same for
outgoing data, it is also set up to facilitate the acquisition of incoming data
but that is described in the following paragraphs. There are two ways this can
be used. The first is the simplest and default behavior and should be used by
those whose cameras are attached to their robot’s microcontroller, a ArRobot
(p. 362) pointer is passed in to the contructor, this is where the commands will
be sent to the robot via the robot’s connection which will then send it along over
the second serial port. The second way is to pass an ArDeviceConnection
(p. 137) to setDeviceConnection, if this is done commands will be sent along the
given serial port, this should ONLY be done if the camera is attached straight
to a serial port on the computer this program is running on.

The next two paragraphs describe how to get data back from the cameras,
but this base class is set up so that by default it won’t try to get data back
and assumes you’re not trying to do that. If you are trying to get data back
the important functions are packetHandler, robotPacketHandler and readPacket
and you should read the docs on those.

If the camera is attached to the robot (and you are thus using the first method
described in the first paragraph) then the only way to get data back is to send
an ArCommands::GETAUX (p. 129), then set up a robotPacketHandler for
the AUX id and have it call the packetHandler you set up in in the class.

If the camera is attached to the serial port on the computer (and thus the second
method described in the first paragraph was used) then its more complicated...
the default way is to just pass in an ArDeviceConnection (p. 137) to set-
DeviceConnection and implement the readPacket method (which MUST not
block), and every time through the robot loop readPacket (with the sensor-
InterpHandler) will be called and any packets will be given to the packetHandler
(which you need to implement in your class) to be processed. The other way to
do this method is to pass both an ArDefaultConnection and false to setDevice-
Connection, this means the camera will not be read at all by default, and you’re
on your own for reading the data in (ie like your own thread).

4.89.2 Constructor & Destructor Documentation

4.89.2.1 ArPTZ::ArPTZ (ArRobot ∗ robot)

Parameters:
robot The robot this camera is attached to, can be NULL

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.89 ArPTZ Class Reference 309

4.89.3 Member Function Documentation

4.89.3.1 virtual bool ArPTZ::packetHandler (ArBasePacket ∗
packet) [inline, virtual]

Handles a packet that was read from the device.

This should work for the robot packet handler or for packets read in from read-
Packet (the joys of OO), but it can’t deal with the need to check the id on robot
packets, so you should check the id from robotPacketHandler and then call this
one so that your stuff can be used by both robot and serial port connections.

Parameters:
packet the packet to handle

Returns:
true if this packet was handled (ie this knows what it is), false otherwise

Reimplemented in ArVCC4 (p. 538).

4.89.3.2 virtual ArBasePacket∗ ArPTZ::readPacket (void)
[inline, virtual]

Reads a packet from the device connection, MUST NOT BLOCK.

This should read in a packet from the myConn connection and return a pointer
to a packet if there was on to read in, or NULL if there wasn’t one... this
MUST not block if it is used with the default mode of being driven from the
sensorInterpHandler, since that is on the robot loop.

Returns:
packet read in, or NULL if there was no packet read

Reimplemented in ArVCC4 (p. 539).

4.89.3.3 bool ArPTZ::robotPacketHandler (ArRobotPacket ∗
packet) [virtual]

Handles a packet that was read by the robot.

This handles packets read in from the robot, this function should just check
the ID of the robot packet and then return what packetHandler thinks of the
packet.

Parameters:
packet the packet to handle

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

310 Aria Class Documentation

Returns:
true if the packet was handled (ie this konws what it is), false otherwise

4.89.3.4 bool ArPTZ::sendPacket (ArBasePacket ∗ packet)
[virtual]

Sends a given packet to the camera (via robot or serial port, depending).

Parameters:
packet the packet to send

Returns:
true if the packet could be sent, false otherwise

4.89.3.5 bool ArPTZ::setAuxPort (int auxPort) [virtual]

Sets the aux port on the robot to be used to communicate with this device.

Parameters:
auxPort The AUX port on the robot’s microcontroller that the device is

connected to. The C166 controller only has one port. The H8 has two.

Returns:
true if the port was valid (1 or 2). False otherwise.

4.89.3.6 bool ArPTZ::setDeviceConnection (ArDeviceConnection ∗
connection, bool driveFromRobotLoop = true) [virtual]

Sets the device connection to be used by this PTZ camera, if set this camera
will send commands via this connection, otherwise its via robot.

Parameters:
connection the device connection the camera is connected to, normally a

serial port

driveFromRobotLoop if this is true then a sensor interp callback wil be
set and that callback will read packets and call the packet handler on
them

Returns:
true if the serial port is opened or can be opened, false otherwise

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.89 ArPTZ Class Reference 311

The documentation for this class was generated from the following files:

• ArPTZ.h
• ArPTZ.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

312 Aria Class Documentation

4.90 ArRangeBuffer Class Reference

This class is a buffer that holds ranging information.

#include <ArRangeBuffer.h>

Public Methods

• ArRangeBuffer (int size)
Constructor.

• virtual ∼ArRangeBuffer ()
Destructor.

• size t getSize (void) const
Gets the size of the buffer.

• void setSize (size t size)
Sets the size of the buffer.

• ArPose getPoseTaken () const
Gets the pose of the robot when readings were taken.

• void setPoseTaken (ArPose p)
Sets the pose of the robot when readings were taken.

• void addReading (double x, double y)
Adds a new reading to the buffer.

• void beginInvalidationSweep (void)
Begins a walk through the getBuffer list of readings.

• void invalidateReading (std::list< ArPoseWithTime ∗>::iterator
readingIt)

While doing an invalidation sweep a reading to the list to be invalidated.

• void endInvalidationSweep (void)
Ends the invalidation sweep.

• const std::list< ArPoseWithTime ∗> ∗ getBuffer (void) const
Gets a pointer to a list of readings.

• std::list< ArPoseWithTime ∗> ∗ getBuffer (void)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.90 ArRangeBuffer Class Reference 313

Gets a pointer to a list of readings.

• double getClosestPolar (double startAngle, double endAngle, ArPose
position, unsigned int maxRange, double ∗angle=NULL) const

Gets the closest reading, on a polar system.

• double getClosestBox (double x1, double y1, double x2, double y2, Ar-
Pose position, unsigned int maxRange, ArPose ∗readingPos=NULL)
const

Gets the closest reading, from a rectangular box, in robot LOCAL coords.

• void applyTransform (ArTransform trans)

Applies a transform to the buffer.

• void clear (void)

Clears all the readings in the range buffer.

• void clearOlderThan (int milliSeconds)

Resets the readings older than this many seconds.

• void clearOlderThanSeconds (int seconds)

Resets the readings older than this many seconds.

• void reset (void)

same as clear, but old name.

• void beginRedoBuffer (void)

This begins a redoing of the buffer.

• void redoReading (double x, double y)

Add a reading to the redoing of the buffer.

• void endRedoBuffer (void)

End redoing the buffer.

4.90.1 Detailed Description

This class is a buffer that holds ranging information.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

314 Aria Class Documentation

4.90.2 Constructor & Destructor Documentation

4.90.2.1 ArRangeBuffer::ArRangeBuffer (int size)

Constructor.

Parameters:
size The size of the buffer, in number of readings

4.90.3 Member Function Documentation

4.90.3.1 void ArRangeBuffer::addReading (double x, double y)

Adds a new reading to the buffer.

Parameters:
x the x position of the reading

y the y position of the reading

4.90.3.2 void ArRangeBuffer::applyTransform (ArTransform trans)

Applies a transform to the buffer.

Applies a transform to the buffers.. this is mostly useful for translating to/from
local/global coords, but may have other uses

Parameters:
trans the transform to apply to the data

4.90.3.3 void ArRangeBuffer::beginInvalidationSweep (void)

Begins a walk through the getBuffer list of readings.

This is a set of funkiness used to invalid readings in the buffer. It is fairly
complicated. But what you need to do, is set up the invalid sweeping with
beginInvalidationSweep, then walk through the list of readings, and pass the
iterator to a reading you want to invalidate to invalidateReading, then after
you are all through walking the list call endInvalidationSweep. Look at the
description of getBuffer for additional warnings.

See also:
invalidateReading (p. 317) , endInvalidationSweep (p. 315)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.90 ArRangeBuffer Class Reference 315

4.90.3.4 void ArRangeBuffer::beginRedoBuffer (void)

This begins a redoing of the buffer.

To redo the buffer means that you’re going to want to replace all of the read-
ings in the buffer, and get rid of the ones that you don’t replace (invalidate
them). The three functions beginRedoBuffer, redoReading, and endRedoBuffer
are all made to enable you to do this. What you do, is call beginRedo-
Buffer() (p. 315); then for each reading you want to be in the buffer, call
redoReading(double x, double y) (p. 317), then when you are done, call end-
RedoBuffer() (p. 315);

4.90.3.5 void ArRangeBuffer::endInvalidationSweep (void)

Ends the invalidation sweep.

See the description of beginInvalidationSweep, it describes how to use this func-
tion.

See also:
beginInvalidationSweep (p. 314) , invalidateReading (p. 317)

4.90.3.6 void ArRangeBuffer::endRedoBuffer (void)

End redoing the buffer.

For a description of how to use this, see beginRedoBuffer

4.90.3.7 std::list< ArPoseWithTime ∗> ∗ ArRangeBuffer::getBuffer
(void)

Gets a pointer to a list of readings.

This function returns a pointer to a list that has all of the readings in it. This
list is mostly for reference, ie for finding some particular value or for using the
readings to draw them. Don’t do any modification at all to the list unless you
really know what you’re doing... and if you do you’d better lock the rangeDevice
this came from so nothing messes with the list while you are doing so.

Returns:
the list of positions this range buffer has

4.90.3.8 const std::list< ArPoseWithTime ∗> ∗
ArRangeBuffer::getBuffer (void) const

Gets a pointer to a list of readings.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

316 Aria Class Documentation

This function returns a pointer to a list that has all of the readings in it. This
list is mostly for reference, ie for finding some particular value or for using the
readings to draw them. Don’t do any modification at all to the list unless you
really know what you’re doing... and if you do you’d better lock the rangeDevice
this came from so nothing messes with the list while you are doing so.

Returns:
the list of positions this range buffer has

4.90.3.9 double ArRangeBuffer::getClosestBox (double x1, double
y1, double x2, double y2, ArPose startPos, unsigned int
maxRange, ArPose ∗ readingPos = NULL) const

Gets the closest reading, from a rectangular box, in robot LOCAL coords.

Gets the closest reading in a region defined by two points (opposeite points of
a rectangle).

Parameters:
x1 the x coordinate of one of the rectangle points

y1 the y coordinate of one of the rectangle points

x2 the x coordinate of the other rectangle point

y2 the y coordinate of the other rectangle point

startPos the position to find the closest reading to (usually the robots
position)

maxRange the maximum range to return (and what to return if nothing
found)

readingPos a pointer to a position in which to store the location of the
closest position

position the origin of the local coords for the definition of the coordinates,
normally just ArRobot::getPosition

Returns:
if the return is >= 0 and <= maxRange then this is the distance to the
closest reading, if it is >= maxRange, then there was no reading in the
given section

4.90.3.10 double ArRangeBuffer::getClosestPolar (double
startAngle, double endAngle, ArPose startPos, unsigned
int maxRange, double ∗ angle = NULL) const

Gets the closest reading, on a polar system.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.90 ArRangeBuffer Class Reference 317

Gets the closest reading in a region defined by startAngle going to endAngle...
going counterclockwise (neg degrees to poseitive... with how the robot is set up,
thats counterclockwise)... from -180 to 180... this means if you want the slice
between 0 and 10 degrees, you must enter it as 0, 10, if you do 10, 0 you’ll get
the 350 degrees between 10 and 0... be especially careful with negative... for
example -30 to -60 is everything from -30, around through 0, 90, and 180 back
to -60... since -60 is actually to clockwise of -30

Parameters:
startAngle where to start the slice

endAngle where to end the slice, going clockwise from startAngle

startPos the position to find the closest reading to (usually the robots
position)

maxRange the maximum range to return (and what to return if nothing
found)

angle a pointer return of the angle to the found reading

position the origin of the local coords for the definition of the coordinates,
normally just ArRobot::getPosition

Returns:
if the return is >= 0 and <= maxRange then this is the distance to the
closest reading, if it is >= maxRange, then there was no reading in the
given section

4.90.3.11 void ArRangeBuffer::invalidateReading (std::list<
ArPoseWithTime ∗>::iterator readingIt)

While doing an invalidation sweep a reading to the list to be invalidated.

See the description of beginInvalidationSweep, it describes how to use this func-
tion.

Parameters:
readingIt the ITERATOR to the reading you want to get rid of

See also:
beginInvaladationSweep , endInvalidationSweep (p. 315)

4.90.3.12 void ArRangeBuffer::redoReading (double x, double y)

Add a reading to the redoing of the buffer.

For a description of how to use this, see beginRedoBuffer

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

318 Aria Class Documentation

Parameters:
x the x param of the coord to add to the buffer

y the x param of the coord to add to the buffer

4.90.3.13 void ArRangeBuffer::setSize (size t size)

Sets the size of the buffer.

If the new size is smaller than the current buffer it chops off the readings that
are excess from the oldest readings... if the new size is larger then it just leaves
room for the buffer to grow

Parameters:
size number of readings to set the buffer to

The documentation for this class was generated from the following files:

• ArRangeBuffer.h
• ArRangeBuffer.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.91 ArRangeDevice Class Reference 319

4.91 ArRangeDevice Class Reference

The class for all devices which return range info (laser, sonar).

#include <ArRangeDevice.h>

Inheritance diagram for ArRangeDevice::

ArRangeDevice

ArIrrfDevice ArRangeDeviceThreaded ArSonarDevice

ArSick

Public Methods

• ArRangeDevice (size t currentBufferSize, size t cumulativeBufferSize,
const char ∗name, unsigned int maxRange)

Constructor.

• virtual ∼ArRangeDevice ()
Destructor.

• virtual const char ∗ getName (void) const
Gets the name of the device.

• virtual void setRobot (ArRobot ∗robot)
Sets the robot this device is attached to.

• virtual ArRobot ∗ getRobot (void)
Gets the robot this device is attached to.

• virtual void setCurrentBufferSize (size t size)
Sets the size of the buffer for current readings.

• virtual void setCumulativeBufferSize (size t size)
Sets the size of the buffer for cumulative readings.

• virtual void addReading (double x, double y)
Adds a reading to the buffer.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

320 Aria Class Documentation

• virtual double currentReadingPolar (double startAngle, double end-
Angle, double ∗angle=NULL) const

Gets the closest current reading in the given polar region.

• virtual double cumulativeReadingPolar (double startAngle, double
endAngle, double ∗angle=NULL) const

Gets the closest cumulative reading in the given polar region.

• virtual double currentReadingBox (double x1, double y1, double x2,
double y2, ArPose ∗readingPos=NULL) const

Gets the closest current reading from the given box region.

• virtual double cumulativeReadingBox (double x1, double y1, double
x2, double y2, ArPose ∗readingPos=NULL) const

Gets the closest current reading from the given box region.

• virtual const ArRangeBuffer ∗ getCurrentRangeBuffer (void) const
Gets the current range buffer.

• virtual const ArRangeBuffer ∗ getCumulativeRangeBuffer (void)
const

Gets the cumulative range buffer.

• virtual const std::list< ArPoseWithTime ∗> ∗ getCurrentBuffer
(void) const

Gets the current buffer of readings.

• virtual const std::list< ArPoseWithTime ∗> ∗ getCumulativeBuffer
(void) const

Gets the current buffer of readings.

• virtual ArRangeBuffer ∗ getCurrentRangeBuffer (void)
Gets the current range buffer.

• virtual ArRangeBuffer ∗ getCumulativeRangeBuffer (void)
Gets the cumulative range buffer.

• virtual std::list< ArPoseWithTime ∗> ∗ getCurrentBuffer (void)
Gets the current buffer of readings.

• virtual std::list< ArPoseWithTime ∗> ∗ getCumulativeBuffer
(void)

Gets the current buffer of readings.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.91 ArRangeDevice Class Reference 321

• virtual const std::list< ArSensorReading ∗> ∗ getRawReadings
(void) const

Gets the raw unfiltered readings from the device.

• virtual void clearCurrentReadings (void)
Clears all the current readings.

• virtual void clearCumulativeReadings (void)
Clears all the cumulative readings.

• virtual void clearCumulativeOlderThan (int milliSeconds)
Clears all the cumulative readings older than this number of milliseconds.

• virtual void clearCumulativeOlderThanSeconds (int seconds)
Clears all the cumulative readings older than this number of seconds.

• virtual unsigned int getMaxRange (void)
Gets the maximum range for this device.

• virtual void setMaxRange (unsigned int maxRange)
Sets the maximum range for this device.

• virtual void applyTransform (ArTransform trans, bool do-
Cumulative=true)

Applies a transform to the buffers.

• virtual int lockDevice ()
Lock this device.

• virtual int tryLockDevice ()
Try to lock this device.

• virtual int unlockDevice ()
Unlock this device.

4.91.1 Detailed Description

The class for all devices which return range info (laser, sonar).

This class has two buffers, a current buffer for storing just recent (relevant)
readings, and a cumulative buffer for a longer history... the sizes of both can be
set in the constructor.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

322 Aria Class Documentation

This class should be used for all sensors like lasers and sonar, also note that
it has the locking functions for such a time when there is a device like a laser
that runs in its own thread, so that every device can be locked and unlocked
and the users don’t have to worry about the detail, because of functions on the
ArRobot (p. 362) structure which check all of the ArRangeDevice s attached
to a robot.

4.91.2 Constructor & Destructor Documentation

4.91.2.1 ArRangeDevice::ArRangeDevice (size t currentBufferSize,
size t cumulativeBufferSize, const char ∗ name, unsigned
int maxRange)

Constructor.

Parameters:
currentBufferSize number of readings to store in the current buffer
cumulativeBufferSize number of readings to store in the cumulative

buffer
name the name of this device
maxRange the max range of this device, if the device can’t find a reading

in a specified section, it returns this maxRange

4.91.3 Member Function Documentation

4.91.3.1 void ArRangeDevice::applyTransform (ArTransform trans,
bool doCumulative = true) [virtual]

Applies a transform to the buffers.

Applies a transform to the buffers.. this is mostly useful for translating to/from
local/global coords, but may have other uses

Parameters:
trans the transform to apply to the data
doCumulative whether to transform the cumulative buffer or not

Reimplemented in ArSick (p. 460).

4.91.3.2 double ArRangeDevice::cumulativeReadingBox (double
x1, double y1, double x2, double y2, ArPose ∗ pose =
NULL) const [virtual]

Gets the closest current reading from the given box region.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.91 ArRangeDevice Class Reference 323

Gets the closest reading in a region defined by two points (opposeite points of
a rectangle) out of the cumulative buffer.

Parameters:
x1 the x coordinate of one of the rectangle points

y1 the y coordinate of one of the rectangle points

x2 the x coordinate of the other rectangle point

y2 the y coordinate of the other rectangle point

readingPos a pointer to a position in which to store the location of the
closest position

Returns:
if the return is >= 0 and <= maxRange then this is the distance to the
closest reading, if it is >= maxRange, then there was no reading in the
given section

4.91.3.3 double ArRangeDevice::cumulativeReadingPolar (double
startAngle, double endAngle, double ∗ angle = NULL)
const [virtual]

Gets the closest cumulative reading in the given polar region.

Gets the closest reading in a region defined by startAngle going to endAngle...
going counterclockwise (neg degrees to poseitive... with how the robot is set up,
thats counterclockwise)... from -180 to 180... this means if you want the slice
between 0 and 10 degrees, you must enter it as 0, 10, if you do 10, 0 you’ll get
the 350 degrees between 10 and 0... be especially careful with negative... for
example -30 to -60 is everything from -30, around through 0, 90, and 180 back
to -60... since -60 is actually to clockwise of -30

Parameters:
startAngle where to start the slice

endAngle where to end the slice, going clockwise from startAngle

position the position to find the closest reading to

angle a pointer return of the angle to the found reading

Returns:
if the return is >= 0 and <= maxRange then this is the distance to the
closest reading, if it is >= maxRange, then there was no reading in the
given section

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

324 Aria Class Documentation

4.91.3.4 double ArRangeDevice::currentReadingBox (double x1,
double y1, double x2, double y2, ArPose ∗ pose = NULL)
const [virtual]

Gets the closest current reading from the given box region.

Gets the closest reading in a region defined by two points (opposeite points of
a rectangle) out of the current buffer.

Parameters:
x1 the x coordinate of one of the rectangle points

y1 the y coordinate of one of the rectangle points

x2 the x coordinate of the other rectangle point

y2 the y coordinate of the other rectangle point

readingPos a pointer to a position in which to store the location of the
closest position

Returns:
if the return is >= 0 and <= maxRange then this is the distance to the
closest reading, if it is >= maxRange, then there was no reading in the
given section

4.91.3.5 double ArRangeDevice::currentReadingPolar (double
startAngle, double endAngle, double ∗ angle = NULL)
const [virtual]

Gets the closest current reading in the given polar region.

Gets the closest reading in a region defined by startAngle going to endAngle...
going counterclockwise (neg degrees to poseitive... with how the robot is set up,
thats counterclockwise)... from -180 to 180... this means if you want the slice
between 0 and 10 degrees, you must enter it as 0, 10, if you do 10, 0 you’ll get
the 350 degrees between 10 and 0... be especially careful with negative... for
example -30 to -60 is everything from -30, around through 0, 90, and 180 back
to -60... since -60 is actually to clockwise of -30

Parameters:
startAngle where to start the slice

endAngle where to end the slice, going clockwise from startAngle

position the position to find the closest reading to

angle a pointer return of the angle to the found reading

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.91 ArRangeDevice Class Reference 325

Returns:
if the return is >= 0 and <= maxRange then this is the distance to the
closest reading, if it is >= maxRange, then there was no reading in the
given section

4.91.3.6 virtual const std::list<ArSensorReading ∗>∗
ArRangeDevice::getRawReadings (void) const [inline,
virtual]

Gets the raw unfiltered readings from the device.

The raw readings are the full set of unfiltered readings from the device, they are
the latest reading, you should manipulate the list you get from this function,
the only manipulation of this list should be done by the range device itself. Its
only pointers for speed.

4.91.3.7 virtual int ArRangeDevice::lockDevice (void) [inline,
virtual]

Lock this device.

If you are also inheriting an ASyncTask you MUST override this to use the lock
from the ArASyncTask (p. 119)

Reimplemented in ArRangeDeviceThreaded (p. 328).

4.91.3.8 void ArRangeDevice::setCumulativeBufferSize (size t size)
[virtual]

Sets the size of the buffer for cumulative readings.

If the new size is smaller than the current buffer it chops off the readings that
are excess from the oldest readings... if the new size is larger then it just leaves
room for the buffer to grow

Parameters:
size number of readings to set the buffer to

4.91.3.9 void ArRangeDevice::setCurrentBufferSize (size t size)
[virtual]

Sets the size of the buffer for current readings.

If the new size is smaller than the current buffer it chops off the readings that
are excess from the oldest readings... if the new size is larger then it just leaves
room for the buffer to grow

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

326 Aria Class Documentation

Parameters:
size number of readings to set the buffer to

4.91.3.10 virtual int ArRangeDevice::tryLockDevice (void)
[inline, virtual]

Try to lock this device.

If you are also inheriting an ASyncTask you MUST override this to use the lock
from the ArASyncTask (p. 119)

Reimplemented in ArRangeDeviceThreaded (p. 328).

4.91.3.11 virtual int ArRangeDevice::unlockDevice (void)
[inline, virtual]

Unlock this device.

If you are also inheriting an ASyncTask you MUST override this to use the lock
from the ArASyncTask (p. 119)

Reimplemented in ArRangeDeviceThreaded (p. 328).

The documentation for this class was generated from the following files:

• ArRangeDevice.h
• ArRangeDevice.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.92 ArRangeDeviceThreaded Class Reference 327

4.92 ArRangeDeviceThreaded Class Reference

A range device which can run in its own thread.

#include <ArRangeDeviceThreaded.h>

Inheritance diagram for ArRangeDeviceThreaded::

ArRangeDeviceThreaded

ArRangeDevice

ArSick

Public Methods

• ArRangeDeviceThreaded (size t currentBufferSize, size t cumulative-
BufferSize, const char ∗name, unsigned int maxRange)

Constructor.

• virtual ∼ArRangeDeviceThreaded ()
Destructor.

• virtual void ∗ runThread (void ∗arg)=0
The functor you need to implement that will be the one executed by the thread.

• virtual void run (void)
Run in this thread.

• virtual void runAsync (void)
Run in its own thread.

• virtual void stopRunning (void)
Stop the thread.

• virtual bool getRunning (void)
Get the running status of the thread.

• virtual bool getRunningWithLock (void)
Get the running status of the thread, locking around the variable.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

328 Aria Class Documentation

• virtual int lockDevice (void)
Lock this device.

• virtual int tryLockDevice (void)
Try to lock this device.

• virtual int unlockDevice (void)
Unlock this device.

4.92.1 Detailed Description

A range device which can run in its own thread.

This is a range device thats threaded, it doesn’t do multipleInheritance from
both ArASyncTask (p. 119) and ArRangeDevice (p. 319) any more since
JAVA doesn’t support this and the wrapper software can’t deal with it. Its still
functionally the same however.

4.92.2 Member Function Documentation

4.92.2.1 virtual int ArRangeDeviceThreaded::lockDevice (void)
[inline, virtual]

Lock this device.

If you are also inheriting an ASyncTask you MUST override this to use the lock
from the ArASyncTask (p. 119)

Reimplemented from ArRangeDevice (p. 325).

4.92.2.2 virtual int ArRangeDeviceThreaded::tryLockDevice (void)
[inline, virtual]

Try to lock this device.

If you are also inheriting an ASyncTask you MUST override this to use the lock
from the ArASyncTask (p. 119)

Reimplemented from ArRangeDevice (p. 326).

4.92.2.3 virtual int ArRangeDeviceThreaded::unlockDevice (void)
[inline, virtual]

Unlock this device.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.92 ArRangeDeviceThreaded Class Reference 329

If you are also inheriting an ASyncTask you MUST override this to use the lock
from the ArASyncTask (p. 119)

Reimplemented from ArRangeDevice (p. 326).

The documentation for this class was generated from the following files:

• ArRangeDeviceThreaded.h
• ArRangeDeviceThreaded.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

330 Aria Class Documentation

4.93 ArRecurrentTask Class Reference

Recurrent task (runs in its own thread).

#include <ArRecurrentTask.h>

Inheritance diagram for ArRecurrentTask::

ArRecurrentTask

ArASyncTask

ArThread

Public Methods

• ArRecurrentTask ()

Constructor.

• ∼ArRecurrentTask ()

Descructor.

• virtual void task ()=0

The main run loop.

• void go ()

Starts up on cycle of the recurrent task.

• int done ()

Check if the task is running or not.

• void reset ()

Cancel the task and reset for the next cycle.

• void ∗ runThread (void ∗ptr)

The main run loop.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.93 ArRecurrentTask Class Reference 331

4.93.1 Detailed Description

Recurrent task (runs in its own thread).

The ArRecurrentTask is a task that runs in its own thread. Recurrent tasks are
asynchronous tasks that complete in a finite amount of time, and need to be
reinvoked recurrently. A typical example is Saphira’s localization task: it runs
for a few hundred milliseconds, localizes the robot, and returns. Then the cycle
starts over. The user simply needs to derive their own class from ArRecurrent-
Task and define the task() (p. 331) function. This is the user code that will be
called to execute the task body. Then, create an object of the class, and call the
go() (p. 330) function to start the task. The status of the task can be checked
with the done() (p. 331) function, which returns 0 if running, 1 if completed,
and 2 if killed. go() (p. 330) can be called whenever the task is done to restart
it. To stop the task in midstream, call reset() (p. 330). kill() kills off the thread,
shouldn’t be used unless exiting the async task permanently

4.93.2 Member Function Documentation

4.93.2.1 int ArRecurrentTask::done ()

Check if the task is running or not.

0 = running, 1 = finished normally, 2 = canceled

4.93.2.2 void ∗ ArRecurrentTask::runThread (void ∗ ptr)
[virtual]

The main run loop.

Override this function and put your taskes run loop here. Check the value of
getRunning() (p. 514) or myRunning periodicly in your loop. If the value goes
false, the loop should exit and runThread() (p. 331) should return.

Reimplemented from ArASyncTask (p. 120).

4.93.2.3 virtual void ArRecurrentTask::task () [pure virtual]

The main run loop.

Override this function and put your task here.

The documentation for this class was generated from the following files:

• ArRecurrentTask.h
• ArRecurrentTask.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

332 Aria Class Documentation

4.94 ArResolver Class Reference

Resolves a list of actions and returns what to do.

#include <ArResolver.h>

Inheritance diagram for ArResolver::

ArResolver

ArPriorityResolver

Public Types

• typedef std::multimap< int, ArAction ∗> ActionMap

Constructor.

Public Methods

• virtual ∼ArResolver ()
Desturctor.

• virtual ArActionDesired ∗ resolve (ActionMap ∗actions, ArRobot
∗robot)=0

Figure out a single ArActionDesired (p. 51) from a list of ArAction
(p. 39) s.

• virtual const char ∗ getName (void) const
Gets the name of the resolver.

• virtual const char ∗ getDescription (void) const
Gets the long description fo the resolver.

4.94.1 Detailed Description

Resolves a list of actions and returns what to do.

This class exists just for resolve, which will always have to be overriden. The
class is used to take a list of actions and find out what to do from that...

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.94 ArResolver Class Reference 333

The documentation for this class was generated from the following file:

• ArResolver.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

334 Aria Class Documentation

4.95 ArRetFunctor Class Template Reference

Base class for functors with a return value.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctor::

ArRetFunctor

ArFunctor

ArGlobalRetFunctor ArRetFunctor1 ArRetFunctor2 ArRetFunctor3 ArRetFunctorC

ArGlobalRetFunctor1 ArRetFunctor1C ArGlobalRetFunctor2 ArRetFunctor2C ArGlobalRetFunctor3 ArRetFunctor3C

Public Methods

• virtual ∼ArRetFunctor ()
Destructor.

• virtual void invoke (void)
Invokes the functor.

• virtual Ret invokeR (void)=0
Invokes the functor with return value.

4.95.1 Detailed Description

template<class Ret> class ArRetFunctor< Ret >

Base class for functors with a return value.

This is the base class for functors with a return value. Code that has a reference
to a functor that returns a value should use this class name. This allows the code
to know how to invoke the functor without knowing which class the member
function is in.

For an overall description of functors, see ArFunctor (p. 154).

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.96 ArRetFunctor1 Class Template Reference 335

4.96 ArRetFunctor1 Class Template Reference

Base class for functors with a return value with 1 parameter.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctor1::

ArRetFunctor1

ArRetFunctor< Ret >

ArFunctor

ArGlobalRetFunctor1 ArRetFunctor1C

Public Methods

• virtual ∼ArRetFunctor1 ()

Destructor.

• virtual Ret invokeR (void)=0

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1)=0

Invokes the functor with return value.

4.96.1 Detailed Description

template<class Ret, class P1> class ArRetFunctor1< Ret, P1 >

Base class for functors with a return value with 1 parameter.

This is the base class for functors with a return value and take 1 parameter.
Code that has a reference to a functor that returns a value and takes 1 parameter
should use this class name. This allows the code to know how to invoke the
functor without knowing which class the member function is in.

For an overall description of functors, see ArFunctor (p. 154).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

336 Aria Class Documentation

4.96.2 Member Function Documentation

4.96.2.1 template<class Ret, class P1> virtual Ret
ArRetFunctor1< Ret, P1 >::invokeR (P1 p1) [pure
virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

Reimplemented in ArGlobalRetFunctor1 (p. 201), and ArRetFunctor1C
(p. 339).

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.97 ArRetFunctor1C Class Template Reference 337

4.97 ArRetFunctor1C Class Template Refer-
ence

Functor for a member function with return value and 1 parameter.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctor1C::

ArRetFunctor1C

ArRetFunctor1< Ret, P1 >

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArRetFunctor1C ()
Constructor.

• ArRetFunctor1C (T &obj, Ret(T::∗func)(P1))
Constructor - supply function pointer.

• ArRetFunctor1C (T &obj, Ret(T::∗func)(P1), P1 p1)
Constructor - supply function pointer, default parameters.

• ArRetFunctor1C (T ∗obj, Ret(T::∗func)(P1))
Constructor - supply function pointer.

• ArRetFunctor1C (T ∗obj, Ret(T::∗func)(P1), P1 p1)
Constructor - supply function pointer, default parameters.

• virtual ∼ArRetFunctor1C ()
Destructor.

• virtual Ret invokeR (void)
Invokes the functor with return value.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

338 Aria Class Documentation

• virtual Ret invokeR (P1 p1)
Invokes the functor with return value.

• virtual void setThis (T ∗obj)
Set the ’this’ pointer.

• virtual void setThis (T &obj)
Set the ’this’ pointer.

• virtual void setP1 (P1 p1)
Set the default parameter.

4.97.1 Detailed Description

template<class Ret, class T, class P1> class ArRetFunctor1C< Ret,
T, P1 >

Functor for a member function with return value and 1 parameter.

This is a class for member functions which take 1 parameter and return a value.
This class contains the knowledge on how to call a member function on a par-
ticular instance of a class. This class should be instantiated by code that wishes
to pass off a functor to another piece of code.

For an overall description of functors, see ArFunctor (p. 154).

4.97.2 Constructor & Destructor Documentation

4.97.2.1 template<class Ret, class T, class P1> ArRetFunctor1C<
Ret, T, P1 >::ArRetFunctor1C (T & obj, Ret(T::∗
func)(P1)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.97.2.2 template<class Ret, class T, class P1> ArRetFunctor1C<
Ret, T, P1 >::ArRetFunctor1C (T & obj, Ret(T::∗
func)(P1), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.97 ArRetFunctor1C Class Template Reference 339

Parameters:
func member function pointer

p1 default first parameter

4.97.2.3 template<class Ret, class T, class P1> ArRetFunctor1C<
Ret, T, P1 >::ArRetFunctor1C (T ∗ obj, Ret(T::∗
func)(P1)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.97.2.4 template<class Ret, class T, class P1> ArRetFunctor1C<
Ret, T, P1 >::ArRetFunctor1C (T ∗ obj, Ret(T::∗
func)(P1), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

4.97.3 Member Function Documentation

4.97.3.1 template<class Ret, class T, class P1> virtual Ret
ArRetFunctor1C< Ret, T, P1 >::invokeR (P1 p1)
[inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

Reimplemented from ArRetFunctor1 (p. 336).

4.97.3.2 template<class Ret, class T, class P1> virtual void
ArRetFunctor1C< Ret, T, P1 >::setP1 (P1 p1) [inline,
virtual]

Set the default parameter.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

340 Aria Class Documentation

Parameters:
p1 default first parameter

4.97.3.3 template<class Ret, class T, class P1> virtual void
ArRetFunctor1C< Ret, T, P1 >::setThis (T & obj)
[inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

4.97.3.4 template<class Ret, class T, class P1> virtual void
ArRetFunctor1C< Ret, T, P1 >::setThis (T ∗ obj)
[inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.98 ArRetFunctor2 Class Template Reference 341

4.98 ArRetFunctor2 Class Template Reference

Base class for functors with a return value with 2 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctor2::

ArRetFunctor2

ArRetFunctor< Ret >

ArFunctor

ArGlobalRetFunctor2 ArRetFunctor2C

Public Methods

• virtual ∼ArRetFunctor2 ()
Destructor.

• virtual Ret invokeR (void)=0
Invokes the functor with return value.

• virtual Ret invokeR (P1 p1)=0
Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2)=0
Invokes the functor with return value.

4.98.1 Detailed Description

template<class Ret, class P1, class P2> class ArRetFunctor2< Ret,
P1, P2 >

Base class for functors with a return value with 2 parameters.

This is the base class for functors with a return value and take 2 parameters.
Code that has a reference to a functor that returns a value and takes 2 param-
eters should use this class name. This allows the code to know how to invoke
the functor without knowing which class the member function is in.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

342 Aria Class Documentation

For an overall description of functors, see ArFunctor (p. 154).

4.98.2 Member Function Documentation

4.98.2.1 template<class Ret, class P1, class P2> virtual Ret
ArRetFunctor2< Ret, P1, P2 >::invokeR (P1 p1, P2 p2)
[pure virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented in ArGlobalRetFunctor2 (p. 205), and ArRetFunctor2C
(p. 346).

4.98.2.2 template<class Ret, class P1, class P2> virtual Ret
ArRetFunctor2< Ret, P1, P2 >::invokeR (P1 p1) [pure
virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

Reimplemented in ArGlobalRetFunctor2 (p. 205), and ArRetFunctor2C
(p. 346).

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.99 ArRetFunctor2C Class Template Reference 343

4.99 ArRetFunctor2C Class Template Refer-
ence

Functor for a member function with return value and 2 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctor2C::

ArRetFunctor2C

ArRetFunctor2< Ret, P1, P2 >

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArRetFunctor2C ()
Constructor.

• ArRetFunctor2C (T &obj, Ret(T::∗func)(P1, P2))
Constructor - supply function pointer.

• ArRetFunctor2C (T &obj, Ret(T::∗func)(P1, P2), P1 p1)
Constructor - supply function pointer, default parameters.

• ArRetFunctor2C (T &obj, Ret(T::∗func)(P1, P2), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

• ArRetFunctor2C (T ∗obj, Ret(T::∗func)(P1, P2))
Constructor - supply function pointer.

• ArRetFunctor2C (T ∗obj, Ret(T::∗func)(P1, P2), P1 p1)
Constructor - supply function pointer, default parameters.

• ArRetFunctor2C (T ∗obj, Ret(T::∗func)(P1, P2), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

344 Aria Class Documentation

• virtual ∼ArRetFunctor2C ()

Destructor.

• virtual Ret invokeR (void)

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1)

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2)

Invokes the functor with return value.

• virtual void setThis (T ∗obj)

Set the ’this’ pointer.

• virtual void setThis (T &obj)

Set the ’this’ pointer.

• virtual void setP1 (P1 p1)

Set the default parameter.

• virtual void setP2 (P2 p2)

Set the default 2nd parameter.

4.99.1 Detailed Description

template<class Ret, class T, class P1, class P2> class ArRet-
Functor2C< Ret, T, P1, P2 >

Functor for a member function with return value and 2 parameters.

This is a class for member functions which take 2 parameters and return a
value. This class contains the knowledge on how to call a member function on
a particular instance of a class. This class should be instantiated by code that
wishes to pass off a functor to another piece of code.

For an overall description of functors, see ArFunctor (p. 154).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.99 ArRetFunctor2C Class Template Reference 345

4.99.2 Constructor & Destructor Documentation

4.99.2.1 template<class Ret, class T, class P1, class P2>
ArRetFunctor2C< Ret, T, P1, P2 >::ArRetFunctor2C (T
& obj, Ret(T::∗ func)(P1, P2)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.99.2.2 template<class Ret, class T, class P1, class P2>
ArRetFunctor2C< Ret, T, P1, P2 >::ArRetFunctor2C (T
& obj, Ret(T::∗ func)(P1, P2), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

4.99.2.3 template<class Ret, class T, class P1, class P2>
ArRetFunctor2C< Ret, T, P1, P2 >::ArRetFunctor2C (T
& obj, Ret(T::∗ func)(P1, P2), P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

p2 default second parameter

4.99.2.4 template<class Ret, class T, class P1, class P2>
ArRetFunctor2C< Ret, T, P1, P2 >::ArRetFunctor2C (T
∗ obj, Ret(T::∗ func)(P1, P2)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

346 Aria Class Documentation

4.99.2.5 template<class Ret, class T, class P1, class P2>
ArRetFunctor2C< Ret, T, P1, P2 >::ArRetFunctor2C (T
∗ obj, Ret(T::∗ func)(P1, P2), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

4.99.2.6 template<class Ret, class T, class P1, class P2>
ArRetFunctor2C< Ret, T, P1, P2 >::ArRetFunctor2C (T
∗ obj, Ret(T::∗ func)(P1, P2), P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

p2 default second parameter

4.99.3 Member Function Documentation

4.99.3.1 template<class Ret, class T, class P1, class P2> virtual
Ret ArRetFunctor2C< Ret, T, P1, P2 >::invokeR (P1 p1,
P2 p2) [inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArRetFunctor2 (p. 342).

4.99.3.2 template<class Ret, class T, class P1, class P2> virtual
Ret ArRetFunctor2C< Ret, T, P1, P2 >::invokeR (P1 p1)
[inline, virtual]

Invokes the functor with return value.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.99 ArRetFunctor2C Class Template Reference 347

Parameters:
p1 first parameter

Reimplemented from ArRetFunctor2 (p. 342).

4.99.3.3 template<class Ret, class T, class P1, class P2> virtual
void ArRetFunctor2C< Ret, T, P1, P2 >::setP1 (P1 p1)
[inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

4.99.3.4 template<class Ret, class T, class P1, class P2> virtual
void ArRetFunctor2C< Ret, T, P1, P2 >::setP2 (P2 p2)
[inline, virtual]

Set the default 2nd parameter.

Parameters:
p2 default second parameter

4.99.3.5 template<class Ret, class T, class P1, class P2> virtual
void ArRetFunctor2C< Ret, T, P1, P2 >::setThis (T &
obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

4.99.3.6 template<class Ret, class T, class P1, class P2> virtual
void ArRetFunctor2C< Ret, T, P1, P2 >::setThis (T ∗
obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

348 Aria Class Documentation

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.100 ArRetFunctor3 Class Template Reference 349

4.100 ArRetFunctor3 Class Template Reference

Base class for functors with a return value with 3 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctor3::

ArRetFunctor3

ArRetFunctor< Ret >

ArFunctor

ArGlobalRetFunctor3 ArRetFunctor3C

Public Methods

• virtual ∼ArRetFunctor3 ()

Destructor.

• virtual Ret invokeR (void)=0

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1)=0

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2)=0

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2, P3 p3)=0

Invokes the functor with return value.

4.100.1 Detailed Description

template<class Ret, class P1, class P2, class P3> class ArRet-
Functor3< Ret, P1, P2, P3 >

Base class for functors with a return value with 3 parameters.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

350 Aria Class Documentation

This is the base class for functors with a return value and take 3 parameters.
Code that has a reference to a functor that returns a value and takes 3 param-
eters should use this class name. This allows the code to know how to invoke
the functor without knowing which class the member function is in.

For an overall description of functors, see ArFunctor (p. 154).

4.100.2 Member Function Documentation

4.100.2.1 template<class Ret, class P1, class P2, class P3> virtual
Ret ArRetFunctor3< Ret, P1, P2, P3 >::invokeR (P1 p1,
P2 p2, P3 p3) [pure virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter
p2 second parameter
p3 third parameter

Reimplemented in ArGlobalRetFunctor3 (p. 209), and ArRetFunctor3C
(p. 356).

4.100.2.2 template<class Ret, class P1, class P2, class P3> virtual
Ret ArRetFunctor3< Ret, P1, P2, P3 >::invokeR (P1 p1,
P2 p2) [pure virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter
p2 second parameter

Reimplemented in ArGlobalRetFunctor3 (p. 210), and ArRetFunctor3C
(p. 357).

4.100.2.3 template<class Ret, class P1, class P2, class P3> virtual
Ret ArRetFunctor3< Ret, P1, P2, P3 >::invokeR (P1
p1) [pure virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.100 ArRetFunctor3 Class Template Reference 351

Reimplemented in ArGlobalRetFunctor3 (p. 210), and ArRetFunctor3C
(p. 357).

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

352 Aria Class Documentation

4.101 ArRetFunctor3C Class Template Refer-
ence

Functor for a member function with return value and 3 parameters.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctor3C::

ArRetFunctor3C

ArRetFunctor3< Ret, P1, P2, P3 >

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArRetFunctor3C ()
Constructor.

• ArRetFunctor3C (T &obj, Ret(T::∗func)(P1, P2, P3))
Constructor - supply function pointer.

• ArRetFunctor3C (T &obj, Ret(T::∗func)(P1, P2, P3), P1 p1)
Constructor - supply function pointer, default parameters.

• ArRetFunctor3C (T &obj, Ret(T::∗func)(P1, P2, P3), P1 p1, P2 p2)
Constructor - supply function pointer, default parameters.

• ArRetFunctor3C (T &obj, Ret(T::∗func)(P1, P2, P3), P1 p1, P2 p2,
P3 p3)

Constructor - supply function pointer, default parameters.

• ArRetFunctor3C (T ∗obj, Ret(T::∗func)(P1, P2, P3))
Constructor - supply function pointer.

• ArRetFunctor3C (T ∗obj, Ret(T::∗func)(P1, P2, P3), P1 p1)
Constructor - supply function pointer, default parameters.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.101 ArRetFunctor3C Class Template Reference 353

• ArRetFunctor3C (T ∗obj, Ret(T::∗func)(P1, P2, P3), P1 p1, P2 p2)

Constructor - supply function pointer, default parameters.

• ArRetFunctor3C (T ∗obj, Ret(T::∗func)(P1, P2, P3), P1 p1, P2 p2, P3
p3)

Constructor - supply function pointer, default parameters.

• virtual ∼ArRetFunctor3C ()

Destructor.

• virtual Ret invokeR (void)

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1)

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2)

Invokes the functor with return value.

• virtual Ret invokeR (P1 p1, P2 p2, P3 p3)

Invokes the functor with return value.

• virtual void setThis (T ∗obj)

Set the ’this’ pointer.

• virtual void setThis (T &obj)

Set the ’this’ pointer.

• virtual void setP1 (P1 p1)

Set the default parameter.

• virtual void setP2 (P2 p2)

Set the default 2nd parameter.

• virtual void setP3 (P3 p3)

Set the default third parameter.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

354 Aria Class Documentation

4.101.1 Detailed Description

template<class Ret, class T, class P1, class P2, class P3> class Ar-
RetFunctor3C< Ret, T, P1, P2, P3 >

Functor for a member function with return value and 3 parameters.

This is a class for member functions which take 3 parameters and return a
value. This class contains the knowledge on how to call a member function on
a particular instance of a class. This class should be instantiated by code that
wishes to pass off a functor to another piece of code.

For an overall description of functors, see ArFunctor (p. 154).

4.101.2 Constructor & Destructor Documentation

4.101.2.1 template<class Ret, class T, class P1, class P2,
class P3> ArRetFunctor3C< Ret, T, P1, P2, P3
>::ArRetFunctor3C (T & obj, Ret(T::∗ func)(P1, P2,
P3)) [inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.101.2.2 template<class Ret, class T, class P1, class P2,
class P3> ArRetFunctor3C< Ret, T, P1, P2, P3
>::ArRetFunctor3C (T & obj, Ret(T::∗ func)(P1, P2,
P3), P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

4.101.2.3 template<class Ret, class T, class P1, class P2,
class P3> ArRetFunctor3C< Ret, T, P1, P2, P3
>::ArRetFunctor3C (T & obj, Ret(T::∗ func)(P1, P2,
P3), P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.101 ArRetFunctor3C Class Template Reference 355

Parameters:
func member function pointer

p1 default first parameter

p2 default second parameter

4.101.2.4 template<class Ret, class T, class P1, class P2,
class P3> ArRetFunctor3C< Ret, T, P1, P2, P3
>::ArRetFunctor3C (T & obj, Ret(T::∗ func)(P1, P2,
P3), P1 p1, P2 p2, P3 p3) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

p2 default second parameter

4.101.2.5 template<class Ret, class T, class P1, class P2,
class P3> ArRetFunctor3C< Ret, T, P1, P2, P3
>::ArRetFunctor3C (T ∗ obj, Ret(T::∗ func)(P1, P2, P3))
[inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.101.2.6 template<class Ret, class T, class P1, class P2,
class P3> ArRetFunctor3C< Ret, T, P1, P2, P3
>::ArRetFunctor3C (T ∗ obj, Ret(T::∗ func)(P1, P2, P3),
P1 p1) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

356 Aria Class Documentation

4.101.2.7 template<class Ret, class T, class P1, class P2,
class P3> ArRetFunctor3C< Ret, T, P1, P2, P3
>::ArRetFunctor3C (T ∗ obj, Ret(T::∗ func)(P1, P2, P3),
P1 p1, P2 p2) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

p2 default second parameter

4.101.2.8 template<class Ret, class T, class P1, class P2,
class P3> ArRetFunctor3C< Ret, T, P1, P2, P3
>::ArRetFunctor3C (T ∗ obj, Ret(T::∗ func)(P1, P2, P3),
P1 p1, P2 p2, P3 p3) [inline]

Constructor - supply function pointer, default parameters.

Parameters:
func member function pointer

p1 default first parameter

p2 default second parameter

p3 default third parameter

4.101.3 Member Function Documentation

4.101.3.1 template<class Ret, class T, class P1, class P2, class
P3> virtual Ret ArRetFunctor3C< Ret, T, P1, P2, P3
>::invokeR (P1 p1, P2 p2, P3 p3) [inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArRetFunctor3 (p. 350).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.101 ArRetFunctor3C Class Template Reference 357

4.101.3.2 template<class Ret, class T, class P1, class P2, class
P3> virtual Ret ArRetFunctor3C< Ret, T, P1, P2, P3
>::invokeR (P1 p1, P2 p2) [inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

p2 second parameter

Reimplemented from ArRetFunctor3 (p. 350).

4.101.3.3 template<class Ret, class T, class P1, class P2, class
P3> virtual Ret ArRetFunctor3C< Ret, T, P1, P2, P3
>::invokeR (P1 p1) [inline, virtual]

Invokes the functor with return value.

Parameters:
p1 first parameter

Reimplemented from ArRetFunctor3 (p. 350).

4.101.3.4 template<class Ret, class T, class P1, class P2, class
P3> virtual void ArRetFunctor3C< Ret, T, P1, P2, P3
>::setP1 (P1 p1) [inline, virtual]

Set the default parameter.

Parameters:
p1 default first parameter

4.101.3.5 template<class Ret, class T, class P1, class P2, class
P3> virtual void ArRetFunctor3C< Ret, T, P1, P2, P3
>::setP2 (P2 p2) [inline, virtual]

Set the default 2nd parameter.

Parameters:
p2 default second parameter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

358 Aria Class Documentation

4.101.3.6 template<class Ret, class T, class P1, class P2, class
P3> virtual void ArRetFunctor3C< Ret, T, P1, P2, P3
>::setP3 (P3 p3) [inline, virtual]

Set the default third parameter.

Parameters:
p3 default third parameter

4.101.3.7 template<class Ret, class T, class P1, class P2, class
P3> virtual void ArRetFunctor3C< Ret, T, P1, P2, P3
>::setThis (T & obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

4.101.3.8 template<class Ret, class T, class P1, class P2, class
P3> virtual void ArRetFunctor3C< Ret, T, P1, P2, P3
>::setThis (T ∗ obj) [inline, virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.102 ArRetFunctorC Class Template Reference 359

4.102 ArRetFunctorC Class Template Refer-
ence

Functor for a member function with return value.

#include <ArFunctor.h>

Inheritance diagram for ArRetFunctorC::

ArRetFunctorC

ArRetFunctor< Ret >

ArFunctor

Public Methods

• ArRetFunctorC ()

Constructor.

• ArRetFunctorC (T &obj, Ret(T::∗func)(void))

Constructor - supply function pointer.

• ArRetFunctorC (T ∗obj, Ret(T::∗func)(void))

Constructor - supply function pointer.

• virtual ∼ArRetFunctorC ()

Destructor - supply function pointer.

• virtual Ret invokeR (void)

Invokes the functor with return value.

• virtual void setThis (T ∗obj)

Set the ’this’ pointer.

• virtual void setThis (T &obj)

Set the ’this’ pointer.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

360 Aria Class Documentation

4.102.1 Detailed Description

template<class Ret, class T> class ArRetFunctorC< Ret, T >

Functor for a member function with return value.

This is a class for member functions which return a value. This class contains
the knowledge on how to call a member function on a particular instance of a
class. This class should be instantiated by code that wishes to pass off a functor
to another piece of code.

For an overall description of functors, see ArFunctor (p. 154).

4.102.2 Constructor & Destructor Documentation

4.102.2.1 template<class Ret, class T> ArRetFunctorC< Ret, T
>::ArRetFunctorC (T & obj, Ret(T::∗ func)(void))
[inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.102.2.2 template<class Ret, class T> ArRetFunctorC< Ret,
T >::ArRetFunctorC (T ∗ obj, Ret(T::∗ func)(void))
[inline]

Constructor - supply function pointer.

Parameters:
func member function pointer

4.102.3 Member Function Documentation

4.102.3.1 template<class Ret, class T> virtual void
ArRetFunctorC< Ret, T >::setThis (T & obj) [inline,
virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.102 ArRetFunctorC Class Template Reference 361

4.102.3.2 template<class Ret, class T> virtual void
ArRetFunctorC< Ret, T >::setThis (T ∗ obj) [inline,
virtual]

Set the ’this’ pointer.

Parameters:
obj the ’this’ pointer

The documentation for this class was generated from the following file:

• ArFunctor.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

362 Aria Class Documentation

4.103 ArRobot Class Reference

THE important class.

#include <ArRobot.h>

Public Types

• enum WaitState { WAIT CONNECTED, WAIT FAILED -
CONN, WAIT RUN EXIT, WAIT TIMEDOUT, WAIT INTR,
WAIT FAIL }

Public Methods

• ArRobot (const char ∗name=NULL, bool ignored=true, bool doSig-
Handle=true, bool normalInit=true)

Constructor.

• ∼ArRobot ()

Destructor.

• void run (bool stopRunIfNotConnected)

Starts the instance to do processing in this thread.

• void runAsync (bool stopRunIfNotConnected)

Starts the instance to do processing in its own new thread.

• bool isRunning (void) const

Returns whether the robot is currently running or not.

• void stopRunning (bool doDisconnect=true)

Stops the robot from doing any more processing.

• void setDeviceConnection (ArDeviceConnection ∗connection)

Sets the connection this instance uses.

• ArDeviceConnection ∗ getDeviceConnection (void) const

Gets the connection this instance uses.

• bool isConnected (void) const

Questions whether the robot is connected or not.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 363

• bool blockingConnect (void)
Connects to a robot, not returning until connection made or failed.

• bool asyncConnect (void)
Connects to a robot, from the robots own thread.

• bool disconnect (void)
Disconnects from a robot.

• void clearDirectMotion (void)
Clears what direct motion commands have been given, so actions work.

• bool isDirectMotion (void) const
Returns true if direct motion commands are blocking actions.

• void enableMotors ()
Enables the motors on the robot.

• void disableMotors ()
Disables the motors on the robot.

• void stop (void)
Stops the robot
See also:

clearDirectMotion (p. 389).

• void setVel (double velocity)
Sets the velocity
See also:

clearDirectMotion (p. 389).

• void setVel2 (double leftVelocity, double rightVelocity)
Sets the velocity of the wheels independently
See also:

clearDirectMotion (p. 389).

• void move (double distance)
Move the given distance forward/backwards

See also:
clearDirectMotion (p. 389).

• bool isMoveDone (double delta=0.0)
Sees if the robot is done moving the previously given move.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

364 Aria Class Documentation

• void setMoveDoneDist (double dist)
Sets the difference required for being done with a move.

• double getMoveDoneDist (void)
Gets the difference required for being done with a move.

• void setHeading (double heading)
Sets the heading
See also:

clearDirectMotion (p. 389).

• void setRotVel (double velocity)
Sets the rotational velocity
See also:

clearDirectMotion (p. 389).

• void setDeltaHeading (double deltaHeading)
Sets the delta heading
See also:

clearDirectMotion (p. 389).

• bool isHeadingDone (double delta=0.0) const
Sees if the robot is done changing to the previously given setHeading.

• void setHeadingDoneDiff (double degrees)
sets the difference required for being done with a heading change.

• double getHeadingDoneDiff (void) const
Gets the difference required for being done with a heading change.

• void setDirectMotionPrecedenceTime (int mSec)
Sets the length of time a direct motion command will take precedence over
actions, in milliseconds.

• unsigned int getDirectMotionPrecedenceTime (void) const
Gets the length of time a direct motion command will take precedence over
actions, in milliseconds.

• bool com (unsigned char command)
Sends a command to the robot with no arguments.

• bool comInt (unsigned char command, short int argument)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 365

Sends a command to the robot with an int for argument.

• bool com2Bytes (unsigned char command, char high, char low)

Sends a command to the robot with two bytes for argument.

• bool comStr (unsigned char command, const char ∗argument)

Sends a command to the robot with a string for argument.

• bool comStrN (unsigned char command, const char ∗str, int size)

Sends a command to the robot with a size bytes of str as argument.

• const char ∗ getRobotName (void) const

Returns the Robot’s name that is set in its onboard configuration.

• const char ∗ getRobotType (void) const

Returns the type of the robot connected to.

• const char ∗ getRobotSubType (void) const

Returns the subtype of the robot connected to.

• double getAbsoluteMaxTransVel (void) const

Gets the robots absolute maximum translational velocity.

• bool setAbsoluteMaxTransVel (double maxVel)

Sets the robots absolute maximum translational velocity.

• double getAbsoluteMaxRotVel (void) const

Gets the robots absolute maximum rotational velocity.

• bool setAbsoluteMaxRotVel (double maxVel)

Sets the robots absolute maximum rotational velocity.

• ArPose getPose (void) const

Gets the global position of the robot.

• double getX (void) const

Gets the global X location of the robot.

• double getY (void) const

Gets the global Y location of the robot.

• double getTh (void) const

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

366 Aria Class Documentation

Gets the global Th location of the robot.

• double getVel (void) const

Gets the translational velocity of the robot.

• double getRotVel (void) const

Gets the rotational velocity of the robot.

• double getRobotRadius (void) const

Gets the robot radius (in mm).

• double getRobotDiagonal (void) const

Gets the robot diagonal (half-height to diagonal of octagon) (in mm).

• double getBatteryVoltage (void) const

Gets the battery voltage of the robot.

• double getBatteryVoltageNow (void) const

Gets the instaneous battery voltage.

• double getLeftVel (void) const

Gets the velocity of the left wheel.

• double getRightVel (void) const

Gets the velocity of the right wheel.

• int getStallValue (void) const

Gets the 2 bytes of stall return from the robot.

• bool isLeftMotorStalled (void) const

Returns true if the left motor is stalled.

• bool isRightMotorStalled (void) const

Returns true if the left motor is stalled.

• double getControl (void) const

Gets the control heading.

• int getFlags (void) const

Gets the flags values.

• bool areMotorsEnabled (void) const

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 367

returns true if the motors are enabled.

• bool areSonarsEnabled (void) const

returns true if the motors are enabled.

• double getCompass (void) const

Gets the compass heading from the robot.

• int getAnalogPortSelected (void) const

Gets which analog port is selected.

• unsigned char getAnalog (void) const

Gets the analog value.

• unsigned char getDigIn (void) const

Gets the byte representing digital input status.

• unsigned char getDigOut (void) const

Gets the byte representing digital output status.

• int getIOAnalogSize (void) const

Gets the number of bytes in the analog IO buffer.

• int getIODigInSize (void) const

Gets the number of bytes in the digital input IO buffer.

• int getIODigOutSize (void) const

Gets the number of bytes in the digital output IO buffer.

• int getIOAnalog (int num) const

Gets the n’th byte from the analog input data from the IO packet.

• unsigned char getIODigIn (int num) const

Gets the n’th byte from the digital input data from the IO packet.

• unsigned char getIODigOut (int num) const

Gets the n’th byte from the digital output data from the IO packet.

• bool hasTableSensingIR (void) const

Gets whether the robot has table sensing IR or not (see params in docs).

• bool isLeftTableSensingIRTriggered (void) const

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

368 Aria Class Documentation

Returns true if the left table sensing IR is triggered.

• bool isRightTableSensingIRTriggered (void) const

Returns true if the right table sensing IR is triggered.

• bool isLeftBreakBeamTriggered (void) const

Returns true if the left break beam IR is triggered.

• bool isRightBreakBeamTriggered (void) const

Returns true if the right break beam IR is triggered.

• ArTime getIOPacketTime (void) const

Returns the time received of the last IO packet.

• bool getEstop (void)

Returns true if the E-Stop button is pressed.

• bool hasFrontBumpers (void) const

Gets whether the robot has front bumpers (see params in docs).

• unsigned int getNumFrontBumpers (void) const

Gets the number of the front bumpers.

• bool hasRearBumpers (void) const

Gets whether the robot has rear bumpers (see params in docs).

• unsigned int getNumRearBumpers (void) const

Gets the number of the rear bumpers.

• ArPose getEncoderPose (void) const

Gets the position of the robot according to the encoders.

• int getMotorPacCount (void) const

Gets the number of motor packets received in the last second.

• int getSonarPacCount (void) const

Gets the number of sonar returns received in the last second.

• int getSonarRange (int num) const

Gets the range of the last sonar reading for the given sonar.

• bool isSonarNew (int num) const

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 369

Find out if the given sonar has a new reading.

• int getNumSonar (void) const
Find the number of sonar there are.

• ArSensorReading ∗ getSonarReading (int num) const
Returns the sonar reading for the given sonar.

• int getClosestSonarRange (double startAngle, double endAngle) const
Returns the closest of the current sonar reading in the given range.

• int getClosestSonarNumber (double startAngle, double endAngle)
const

Returns the number of the sonar that has the closest current reading in the
given range.

• const char ∗ getName (void) const
Gets the robots name in ARIAs list.

• void setName (const char ∗name)
Sets the robots name in ARIAs list.

• void moveTo (ArPose pose, bool doCumulative=true)
Moves the robot’s idea of its position to this position.

• void moveTo (ArPose to, ArPose from, bool doCumulative=true)
Moves the robot’s RW position to reflect pose From => pose To.

• size t getBatteryVoltageAverageOfNum (void)
Gets the number of readings the battery voltage is the average of.

• void setBatteryVoltageAverageOfNum (size t numToAverage)
Sets the number of readings the battery voltage is the average of (default 20).

• void setEncoderTransform (ArPose deadReconPos, ArPose global-
Pos)

Changes the transform.

• void setEncoderTransform (ArPose transformPos)
Changes the transform directly.

• ArTransform getEncoderTransform (void) const
Gets the encoder transform.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

370 Aria Class Documentation

• ArTransform getToGlobalTransform (void) const
This gets the transform from local coords to global coords.

• ArTransform getToLocalTransform (void) const
This gets the transform for going from global coords to local coords.

• void applyTransform (ArTransform trans, bool do-
Cumulative=true)

This applies a transform to all the robot range devices and to the sonar.

• void setDeadReconPose (ArPose pose)
Sets the dead recon position of the robot.

• void addRangeDevice (ArRangeDevice ∗device)
Adds a rangeDevice to the robot’s list of them, and set the device’s robot
pointer.

• void remRangeDevice (const char ∗name)
Remove a range device from the robot’s list, by name.

• void remRangeDevice (ArRangeDevice ∗device)
Remove a range device from the robot’s list, by instance.

• const ArRangeDevice ∗ findRangeDevice (const char ∗name) const
Finds a rangeDevice in the robot’s list.

• ArRangeDevice ∗ findRangeDevice (const char ∗name)
Finds a rangeDevice in the robot’s list.

• std::list< ArRangeDevice ∗> ∗ getRangeDeviceList (void)
Gets the range device list.

• bool hasRangeDevice (ArRangeDevice ∗device) const
Finds whether a particular range device is attached to this robot or not.

• double checkRangeDevicesCurrentPolar (double startAngle, double
endAngle, double ∗angle=NULL) const

Goes through all the range devices and checks them.

• double checkRangeDevicesCumulativePolar (double startAngle,
double endAngle, double ∗angle=NULL) const

Goes through all the range devices and checks them.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 371

• double checkRangeDevicesCurrentBox (double x1, double y1, double
x2, double y2, ArPose ∗readingPos=NULL) const
• double checkRangeDevicesCumulativeBox (double x1, double y1,

double x2, double y2, ArPose ∗readingPos=NULL) const
• void setStateReflectionRefreshTime (int msec)

Sets the number of milliseconds between state reflection refreshes if the state
has not changed.

• int getStateReflectionRefreshTime (void) const
Sets the number of milliseconds between state reflection refreshes if the state
has not changed.

• void addPacketHandler (ArRetFunctor1< bool, ArRobotPacket
∗> ∗functor, ArListPos::Pos position=ArListPos::LAST)

Adds a packet handler to the list of packet handlers.

• void remPacketHandler (ArRetFunctor1< bool, ArRobotPacket
∗> ∗functor)

Removes a packet handler from the list of packet handlers.

• void addConnectCB (ArFunctor ∗functor, ArListPos::Pos
position=ArListPos::LAST)

Adds a connect callback.

• void remConnectCB (ArFunctor ∗functor)
Adds a disconnect callback.

• void addFailedConnectCB (ArFunctor ∗functor, ArListPos::Pos
position=ArListPos::LAST)

Adds a callback for when a connection to the robot is failed.

• void remFailedConnectCB (ArFunctor ∗functor)
Removes a callback for when a connection to the robot is failed.

• void addDisconnectNormallyCB (ArFunctor ∗functor, ArList-
Pos::Pos position=ArListPos::LAST)

Adds a callback for when disconnect is called while connected.

• void remDisconnectNormallyCB (ArFunctor ∗functor)
Removes a callback for when disconnect is called while connected.

• void addDisconnectOnErrorCB (ArFunctor ∗functor, ArList-
Pos::Pos position=ArListPos::LAST)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

372 Aria Class Documentation

Adds a callback for when disconnection happens because of an error.

• void remDisconnectOnErrorCB (ArFunctor ∗functor)
Removes a callback for when disconnection happens because of an error.

• void addRunExitCB (ArFunctor ∗functor, ArListPos::Pos
position=ArListPos::LAST)

Adds a callback for when the run loop exits for what ever reason.

• void remRunExitCB (ArFunctor ∗functor)
Removes a callback for when the run loop exits for what ever reason.

• WaitState waitForConnect (unsigned int msecs=0)
Suspend calling thread until the ArRobot is connected.

• WaitState waitForConnectOrConnFail (unsigned int msecs=0)
Suspend calling thread until the ArRobot is connected or fails to connect.

• WaitState waitForRunExit (unsigned int msecs=0)
Suspend calling thread until the ArRobot run loop has exited.

• void wakeAllWaitingThreads ()
Wake up all threads waiting on this robot.

• void wakeAllConnWaitingThreads ()
Wake up all threads waiting for connection.

• void wakeAllConnOrFailWaitingThreads ()
Wake up all threads waiting for connection or connection failure.

• void wakeAllRunExitWaitingThreads ()
Wake up all threads waiting for the run loop to exit.

• bool addUserTask (const char ∗name, int position, ArFunctor
∗functor, ArTaskState::State ∗state=NULL)

Adds a user task to the list of synchronous taskes.

• void remUserTask (const char ∗name)
Removes a user task from the list of synchronous taskes by name.

• void remUserTask (ArFunctor ∗functor)
Removes a user task from the list of synchronous taskes by functor.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 373

• ArSyncTask ∗ findUserTask (const char ∗name)
Finds a user task by name.

• ArSyncTask ∗ findUserTask (ArFunctor ∗functor)
Finds a user task by functor.

• void logUserTasks (void) const
Logs the list of user tasks, strictly for your viewing pleasure.

• void logAllTasks (void) const
Logs the list of all tasks, strictly for your viewing pleasure.

• bool addSensorInterpTask (const char ∗name, int position, ArFunctor
∗functor, ArTaskState::State ∗state=NULL)

Adds a task under the sensor interp part of the syncronous tasks.

• void remSensorInterpTask (const char ∗name)
Removes a sensor interp tasks by name.

• void remSensorInterpTask (ArFunctor ∗functor)
Removes a sensor interp tasks by functor.

• ArSyncTask ∗ findTask (const char ∗name)
Finds a task by name.

• ArSyncTask ∗ findTask (ArFunctor ∗functor)
Finds a task by functor.

• bool addAction (ArAction ∗action, int priority)
Adds an action to the list with the given priority.

• bool remAction (ArAction ∗action)
Removes an action from the list, by pointer.

• bool remAction (const char ∗actionName)
Removes an action from the list, by name.

• ArAction ∗ findAction (const char ∗actionName)
Returns the first (highest priority) action with the given name (or NULL).

• ArResolver::ActionMap ∗ getActionMap (void)
Returns the map of actions... don’t do this unless you really know what
you’re doing.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

374 Aria Class Documentation

• void deactivateActions (void)
Deactivates all the actions.

• void logActions (void) const
Logs out the actions and their priorities.

• ArResolver ∗ getResolver (void)
Gets the resolver the robot is using.

• void setResolver (ArResolver ∗resolver)
Sets the resolver the robot is using.

• void setEncoderCorrectionCallback (ArRetFunctor1< double, Ar-
PoseWithTime > ∗functor)

Sets the encoderCorrectionCallback.

• ArRetFunctor1< double, ArPoseWithTime > ∗ getEncoder-
CorrectionCallback (void) const

Gets the encoderCorrectionCallback.

• void setCycleTime (unsigned int ms)
Sets the number of ms between cycles.

• unsigned int getCycleTime (void) const
Gets the number of ms between cycles.

• void setCycleWarningTime (unsigned int ms)
Sets the number of ms between cycles to warn over.

• unsigned int getCycleWarningTime (void) const
Gets the number of ms between cycles to warn over.

• unsigned int getCycleWarningTime (void)
Gets the number of ms between cycles to warn over.

• void setConnectionCycleMultiplier (unsigned int multiplier)
Sets the multiplier for how many cycles ArRobot waits when connecting.

• unsigned int getConnectionCycleMultiplier (void) const
Gets the multiplier for how many cycles ArRobot waits when connecting.

• void setCycleChained (bool cycleChained)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 375

Sets whether to chain the robot cycle to when we get in SIP packets.

• bool isCycleChained (void) const
Gets whether we chain the robot cycle to when we get in SIP packets.

• void setConnectionTimeoutTime (int mSecs)
Sets the time without a response until connection assumed lost.

• int getConnectionTimeoutTime (void) const
Gets the time without a response until connection assumed lost.

• ArTime getLastPacketTime (void) const
Gets the time the last packet was received.

• void setPoseInterpNumReadings (size t numReadings)
Sets the number of packets back in time the ArInterpolation (p. 226) goes.

• size t getPoseInterpNumReadings (void) const
Sets the number of packets back in time the position interpol goes.

• int getPoseInterpPosition (ArTime timeStamp, ArPose ∗position)
Gets the position the robot was at at the given timestamp.

• unsigned int getCounter (void) const
Gets the Counter for the time through the loop.

• const ArRobotParams ∗ getRobotParams (void) const
Gets the parameters the robot is using.

• const ArRobotConfigPacketReader ∗ getOrigRobotConfig (void)
const

Gets the original robot config packet information.

• void setTransVelMax (double vel)
Sets the maximum translational velocity.

• void setTransAccel (double acc)
Sets the translational acceleration.

• void setTransDecel (double decel)
Sets the translational acceleration.

• void setRotVelMax (double vel)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

376 Aria Class Documentation

Sets the maximum rotational velocity.

• void setRotAccel (double acc)
Sets the rotational acceleration.

• void setRotDecel (double decel)
Sets the rotational acceleration.

• bool hasSettableVelMaxes (void) const
If the robot has settable maximum velocities.

• double getTransVelMax (void) const
Gets the maximum translational velocity.

• double getRotVelMax (void) const
Gets the maximum rotational velocity.

• bool hasSettableAccsDecs (void) const
If the robot has settable accels and decels.

• double getTransAccel (void) const
Gets the translational acceleration.

• double getTransDecel (void) const
Gets the translational acceleration.

• double getRotAccel (void) const
Gets the rotational acceleration.

• double getRotDecel (void) const
Gets the rotational acceleration.

• bool loadParamFile (const char ∗file)
Loads a parameter file (replacing all other params).

• void attachKeyHandler (ArKeyHandler ∗keyHandler, bool exitOn-
Escape=true)

Attachs a key handler.

• ArKeyHandler ∗ getKeyHandler (void) const
Gets the key handler attached to this robot.

• int lock ()

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 377

Lock the robot instance.

• int tryLock ()
Try to lock the robot instance without blocking.

• int unlock ()
Unlock the robot instance.

• bool isStabilizing (void)
This tells us if we’re in the preconnection state.

• void setStabilizingTime (int mSecs)
How long we should stabilize for in ms (0 disables stabilizing).

• int getStabilizingTime (void) const
How long we stabilize for in ms (0 means no stabilizng).

• void addStabilizingCB (ArFunctor ∗functor, ArListPos::Pos
position=ArListPos::LAST)

Adds a callback called when the robot starts stabilizing before declaring con-
nection.

• void remStabilizingCB (ArFunctor ∗functor)
Removes stabilizing callback.

• ArSyncTask ∗ getSyncTaskRoot (void)
This gets the root of the syncronous task tree, only serious developers should
use it.

• void loopOnce (void)
This function loops once... only serious developers should use it.

• void incCounter (void)
This is only for use by syncLoop.

• void packetHandler (void)
Packet Handler, internal.

• void actionHandler (void)
Action Handler, internal.

• void stateReflector (void)
State Reflector, internal.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

378 Aria Class Documentation

• void robotLocker (void)

Robot locker, internal.

• void robotUnlocker (void)

Robot unlocker, internal.

• void keyHandlerExit (void)

For the key handler, escape calls this to exit, internal.

• bool processMotorPacket (ArRobotPacket ∗packet)

Processes a motor packet, internal.

• void processNewSonar (char number, int range, ArTime time-
Received)

Processes a new sonar reading, internal.

• bool processEncoderPacket (ArRobotPacket ∗packet)

Processes a new encoder packet, internal.

• bool processIOPacket (ArRobotPacket ∗packet)

Processes a new IO packet, internal.

• void init (void)

Internal function, shouldn’t be used.

• void setUpSyncList (void)

Internal function, shouldn’t be used, sets up the default sync list.

• void setUpPacketHandlers (void)

Internal function, shouldn’t be used, sets up the default packet handlers.

• int asyncConnectHandler (bool tryHarderToConnect)

Internal function, shouldn’t be used, does a single run of connecting.

• void dropConnection (void)

Internal function, shouldn’t be used, drops the conn because of error.

• void failedConnect (void)

Internal function, shouldn’t be used, denotes the conn failed.

• void madeConnection (void)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 379

Internal function, shouldn’t be used, does the initial conn stuff.

• void startStabilization (void)

Internal function, shouldn’t be used, calls the preconnected stuff.

• void finishedConnection (void)

Internal function, shouldn’t be used, does the after conn stuff.

• bool handlePacket (ArRobotPacket ∗packet)

Internal function, takes a packet and passes it to the packet handlers, returns
true if handled, false otherwise.

• std::list< ArFunctor ∗> ∗ getRunExitListCopy ()

Internal function, shouldn’t be used, does what its name says.

• void processParamFile (void)

Internal function, processes a parameter file.

• ArPose getRawEncoderPose (void) const

Internal function to get the raw encoder reading, don’t use it.

• bool getNoTimeWarningThisCycle (void)

Internal function for sync loop and sync task to see if we should warn this
cycle or not.

• void setNoTimeWarningThisCycle (bool noTimeWarningThisCycle)

Internal function for sync loop and sync task to say if we should warn this
cycle or not.

4.103.1 Detailed Description

THE important class.

This is the most important class, the only classes most people will ever have to
use are this one, and the ArSimpleConnector (p. 483). NOTE: In Windows
you cannot make an ArRobot a global, it will crash because the windows com-
piler initializes the constructors in the wrong order... you can make a pointer
to an ArRobot and then new one however.

See also:
ArSerialConnection (p. 444) , ArTcpConnection (p. 507)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

380 Aria Class Documentation

4.103.2 Member Enumeration Documentation

4.103.2.1 enum ArRobot::WaitState

Enumeration values:
WAIT CONNECTED The robot has connected.

WAIT FAILED CONN The robot failed to connect.

WAIT RUN EXIT The run loop has exited.

WAIT TIMEDOUT The wait reached the timeout specified.

WAIT INTR The wait was interupted by a signal.

WAIT FAIL The wait failed due to an error.

4.103.3 Constructor & Destructor Documentation

4.103.3.1 ArRobot::ArRobot (const char ∗ name = NULL,
bool obsolete = true, bool doSigHandle = true, bool
normalInit = true)

Constructor.

Parameters:
ignored this used to be state reflection but with many additions that make

it so that things can’t work right without state reflection the ability
to not do state refleciton has been removed

normalInit whether the robot should initializes its structures or the call-
ing program will take care of it. No one will probalby ever use this
value, since if they are doing that then overriding will probably be
more useful, but there it is.

doSigHandle do normal signal handling and have this robot instance
stopRunning() (p. 415) when the program is signaled

4.103.4 Member Function Documentation

4.103.4.1 void ArRobot::actionHandler (void)

Action Handler, internal.

Runs the resolver on the actions, it just saves these values for use by the state-
Reflector, otherwise it sends these values straight down to the robot.

See also:
addAction (p. 381) , remAction (p. 404)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 381

4.103.4.2 bool ArRobot::addAction (ArAction ∗ action, int
priority)

Adds an action to the list with the given priority.

Adds an action to the list of actions at the given priority, in the case of two (or
more) actions with the same priority, the default resolver (ArPriorityResolver
(p. 304)) averages the the multiple readings... the priority can be any integer,
but as a convention 0 to 100 is used, with 100 being the highest priority.

Parameters:
action the action to add
priority what importance to give the action

Returns:
true if the action could be added (non NULL) false otherwise

4.103.4.3 void ArRobot::addConnectCB (ArFunctor ∗ functor,
ArListPos::Pos position = ArListPos::LAST)

Adds a connect callback.

Adds a connect callback, which is an ArFunctor (p. 154), created as an Ar-
FunctorC (p. 181). The entire list of connect callbacks is called when a connec-
tion is made with the robot. If you have some sort of module that adds a call-
back, that module must remove the callback when the module is removed.

Parameters:
functorfunctor created from ArFunctorC (p. 181) which refers to the

function to call.
position whether to place the functor first or last

See also:
remConnectCB (p. 404)

4.103.4.4 void ArRobot::addDisconnectNormallyCB (ArFunctor ∗
functor, ArListPos::Pos position = ArListPos::LAST)

Adds a callback for when disconnect is called while connected.

Adds a disconnect normally callback,which is an ArFunctor (p. 154), created
as an ArFunctorC (p. 181). This whole list of disconnect normally callbacks is
called when something calls disconnect if the instance isConnected. If there is
no connection and disconnect is called nothing is done. If you have some sort of
module that adds a callback, that module must remove the callback when the
module is removed.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

382 Aria Class Documentation

Parameters:
functor functor created from ArFunctorC (p. 181) which refers to the

function to call.
position whether to place the functor first or last

See also:
remFailedConnectCB (p. 405)

4.103.4.5 void ArRobot::addDisconnectOnErrorCB (ArFunctor ∗
functor, ArListPos::Pos position = ArListPos::LAST)

Adds a callback for when disconnection happens because of an error.

Adds a disconnect on error callback, which is an ArFunctor (p. 154), created
as an ArFunctorC (p. 181). This whole list of disconnect on error callbacks
is called when ARIA loses connection to a robot because of an error. This
can occur if the physical connection (ie serial cable) between the robot and the
computer is severed/disconnected, if one of a pair of radio modems that connect
the robot and computer are disconnected, if someone presses the reset button
on the robot, or if the simulator is closed while ARIA is connected to it. Note
that if the link between the two is lost the ARIA assumes it is temporary until it
reaches a timeout value set with setConnectionTimeoutTime. If you have some
sort of module that adds a callback, that module must remove the callback when
the module removed.

Parameters:
functor functor created from ArFunctorC (p. 181) which refers to the

function to call.
position whether to place the functor first or last

See also:
remDisconnectOnErrorCB (p. 405)

4.103.4.6 void ArRobot::addFailedConnectCB (ArFunctor ∗
functor, ArListPos::Pos position = ArListPos::LAST)

Adds a callback for when a connection to the robot is failed.

Adds a failed connect callback,which is an ArFunctor (p. 154), created as an
ArFunctorC (p. 181). This whole list of failed connect callbacks is called when
an attempt is made to connect to the robot, but fails. The usual reason for this
failure is either that there is no robot/sim where the connection was tried to be
made, the robot wasn’t given a connection, or the radio modems that commu-
nicate with the robot aren’t on. If you have some sort of module that adds a
callback, that module must remove the callback when the module removed.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 383

Parameters:
functor functor created from ArFunctorC (p. 181) which refers to the

function to call.

position whether to place the functor first or last

See also:
remFailedConnectCB (p. 405)

4.103.4.7 void ArRobot::addPacketHandler (ArRetFunctor1< bool,
ArRobotPacket ∗> ∗ functor, ArListPos::Pos position =
ArListPos::LAST)

Adds a packet handler to the list of packet handlers.

Adds a packet handler. A packet handler is an ArRetFunctor1 (p. 335), cre-
ated as an instance of ArRetFunctor1C (p. 337). The return is a boolean,
while the functor takes an ArRobotPacket (p. 423) pointer as the argument.
This functor is placed in the list of functors to call when a packet arrives. This
list is gone through by order until one of the handlers returns true. @argu-
ment functor the functor to call when the packet comes in @argument position
whether to place the functor first or last

See also:
remPacketHandler (p. 405)

4.103.4.8 void ArRobot::addRunExitCB (ArFunctor ∗ functor,
ArListPos::Pos position = ArListPos::LAST)

Adds a callback for when the run loop exits for what ever reason.

Adds a callback that is called when the run loop exits. The functor is which
is an ArFunctor (p. 154), created as an ArFunctorC (p. 181). The whole list
of functors is called when the run loop exits. This is most usefull for threaded
programs that run the robot using ArRobot::runAsync (p. 408). This will
allow user threads to know when the robot loop has exited.

Parameters:
functor functor created from ArFunctorC (p. 181) which refers to the

function to call.

position whether to place the functor first or last

See also:
remRunExitCB (p. 406)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

384 Aria Class Documentation

4.103.4.9 bool ArRobot::addSensorInterpTask (const char ∗ name,
int position, ArFunctor ∗ functor, ArTaskState::State ∗
state = NULL)

Adds a task under the sensor interp part of the syncronous tasks.

The synchronous tasks get called every robot cycle (every 100 ms by de-
fault).

Parameters:
name the name to give to the task, should be unique

position the place in the list of user tasks to place this task, this can be
any integer, though by convention 0 to 100 is used. The tasks are
called in order of highest number to lowest number.

functor functor created from ArFunctorC (p. 181) which refers to the
function to call.

See also:
remSensorInterpTask (p. 406)

4.103.4.10 void ArRobot::addStabilizingCB (ArFunctor ∗ functor,
ArListPos::Pos position = ArListPos::LAST)

Adds a callback called when the robot starts stabilizing before declaring con-
nection.

Adds a stablizing callback, which is an ArFunctor (p. 154), created as an Ar-
FunctorC (p. 181). The entire list of connect callbacks is called just before
the connection is called done to the robot. This time can be used to calibtrate
readings (on things like gyros).

Parameters:
functorfunctor created from ArFunctorC (p. 181) which refers to the

function to call.

position whether to place the functor first or last

See also:
remConnectCB (p. 404)

4.103.4.11 bool ArRobot::addUserTask (const char ∗ name, int
position, ArFunctor ∗ functor, ArTaskState::State ∗
state = NULL)

Adds a user task to the list of synchronous taskes.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 385

The synchronous tasks get called every robot cycle (every 100 ms by default).

Parameters:
name the name to give to the task, should be unique

position the place in the list of user tasks to place this task, this can be
any integer, though by convention 0 to 100 is used. The tasks are
called in order of highest number to lowest position number.

functor functor created from ArFunctorC (p. 181) which refers to the
function to call.

See also:
remUserTask (p. 407)

4.103.4.12 void ArRobot::applyTransform (ArTransform trans,
bool doCumulative = true)

This applies a transform to all the robot range devices and to the sonar.

Applies a transform to the range devices... this is mostly useful for translating
to/from local/global coords, but may have other uses

Parameters:
trans the transform to apply

doCumulative whether to transform the cumulative buffers or not

4.103.4.13 bool ArRobot::asyncConnect (void)

Connects to a robot, from the robots own thread.

Sets up the robot to connect, then returns, but the robot must be running (ie
from runAsync) before you do this. Also this will fail if the robot is already
connected. If you want to know what happened because of the connect then
look at the callbacks. NOTE, this will not lock robot before setting values, so
you MUST lock the robot before you call this function and unlock the robot
after you call this function. If you fail to lock the robot, you’ll may wind up with
wierd behavior. Other than the aspect of blocking or not the only difference
between async and blocking connects (other than the blocking) is that async is
run every robot cycle, whereas blocking runs as fast as it can... also blocking
will try to reconnect a radio modem if it looks like it didn’t get connected in the
first place, so blocking can wind up taking 10 or 12 seconds to decide it can’t
connect, whereas async doesn’t try hard at all to reconnect the radio modem
(beyond its first try) (under the assumption the async connect is user driven,
so they’ll just try again, and so that it won’t mess up the sync loop by blocking
for so long).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

386 Aria Class Documentation

Returns:
true if the robot is running and the robot will try to connect, false if the
robot isn’t running so won’t try to connect or if the robot is already con-
nected

See also:
addConnectCB (p. 381)

See also:
addFailedConnectCB (p. 382)

See also:
runAsync (p. 408)

4.103.4.14 int ArRobot::asyncConnectHandler (bool
tryHarderToConnect)

Internal function, shouldn’t be used, does a single run of connecting.

This is an internal function that is used both for async connects and blocking
connects use to connect. It does about the same thing for both, and it should
only be used by asyncConnect and blockingConnect really. But here it is. The
only difference between when its being used by blocking/async connect is that
in blocking mode if it thinks there may be problems with the radio modem it
pauses for two seconds trying to deal with this... whereas in async mode it tries
to deal with this in a simpler way.

Parameters:
tryHarderToConnect if this is true, then if the radio modems look like

they aren’t working, it’ll take about 2 seconds to try and connect
them, whereas if its false, it’ll do a little try, but won’t try very hard

Returns:
0 if its still trying to connect, 1 if it connected, 2 if it failed

4.103.4.15 void ArRobot::attachKeyHandler (ArKeyHandler ∗
keyHandler, bool exitOnEscape = true)

Attachs a key handler.

This will attach a key handler to a robot, by putting it into the robots sensor
interp task list (a keyboards a sensor of users will, right?). By default exitOn-
Escape is true, which will cause this function to add an escape key handler to
the key handler, this will make the program exit when escape is pressed... if
you don’t like this you can pass exitOnEscape in as false.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 387

Parameters:
keyHandler the key handler to attach

exitOnEscape whether to exit when escape is pressed or not

4.103.4.16 bool ArRobot::blockingConnect (void)

Connects to a robot, not returning until connection made or failed.

Connects to the robot, returning only when a connection has been made or it
has been established a connection can’t be made. This connection usually is
fast, but can take up to 30 seconds if the robot is in a wierd state (this is not
often). If the robot is connected via ArSerialConnection (p. 444) then the
connect will also connect the radio modems. Upon a successful connection all
of the Connection Callback Functors that have been registered will be called.
NOTE, this will lock the robot before setting values, so you MUST not have
the robot locked from where you call this function. If you do, you’ll wind up
in a deadlock. This behavior is there because otherwise you’d have to lock the
robot before calling this function, and normally blockingConnect will be called
from a seperate thread, and that thread won’t be doing anything else with the
robot at that time. Other than the aspect of blocking or not the only difference
between async and blocking connects (other than the blocking) is that async is
run every robot cycle, whereas blocking runs as fast as it can... also blocking
will try to reconnect a radio modem if it looks like it didn’t get connected in the
first place, so blocking can wind up taking 10 or 12 seconds to decide it can’t
connect, whereas async doesn’t try hard at all to reconnect the radio modem
(under the assumption the async connect is user driven, so they’ll just try again,
and so that it won’t mess up the sync loop by blocking for so long).

Returns:
true if a connection could be made, false otherwise

4.103.4.17 double ArRobot::checkRangeDevicesCumulativeBox
(double x1, double y1, double x2, double y2, ArPose ∗
readingPos = NULL) const

This goes through all of the registered range devices and locks each, calls
cumulativeReadingBox on it, and then unlocks it.

Gets the closest reading in a region defined by the two points of a rectangle.

Parameters:
x1 the x coordinate of one of the rectangle points

y1 the y coordinate of one of the rectangle points

x2 the x coordinate of the other rectangle point

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

388 Aria Class Documentation

y2 the y coordinate of the other rectangle point
readingPos a pointer to a position in which to store the location of the

closest position

Returns:
if the return is >= 0 then this is the distance to the closest reading, if it is
< 0 then there were no readings in the given region

4.103.4.18 double ArRobot::checkRangeDevicesCumulativePolar
(double startAngle, double endAngle, double ∗ angle =
NULL) const

Goes through all the range devices and checks them.

This goes through all of the registered range devices and locks each, calls
cumulativeReadingPolar on it, and then unlocks it.

Gets the closest reading in a region defined by startAngle going to endAngle...
going counterclockwise (neg degrees to poseitive... with how the robot is set up,
thats counterclockwise)... from -180 to 180... this means if you want the slice
between 0 and 10 degrees, you must enter it as 0, 10, if you do 10, 0 you’ll get
the 350 degrees between 10 and 0... be especially careful with negative... for
example -30 to -60 is everything from -30, around through 0, 90, and 180 back
to -60... since -60 is actually to clockwise of -30

Parameters:
startAngle where to start the slice
endAngle where to end the slice, going clockwise from startAngle
angle a pointer return of the angle to the found reading

Returns:
if the return is >= 0 then this is the distance to the closest reading, if it is
< 0 then there were no readings in the given region

4.103.4.19 double ArRobot::checkRangeDevicesCurrentBox
(double x1, double y1, double x2, double y2, ArPose ∗
readingPos = NULL) const

This goes through all of the registered range devices and locks each, calls current-
ReadingBox on it, and then unlocks it.

Gets the closest reading in a region defined by the two points of a rectangle.

Parameters:
x1 the x coordinate of one of the rectangle points

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 389

y1 the y coordinate of one of the rectangle points

x2 the x coordinate of the other rectangle point

y2 the y coordinate of the other rectangle point

readingPos a pointer to a position in which to store the location of the
closest position

Returns:
if the return is >= 0 then this is the distance to the closest reading, if it is
< 0 then there were no readings in the given region

4.103.4.20 double ArRobot::checkRangeDevicesCurrentPolar
(double startAngle, double endAngle, double ∗ angle =
NULL) const

Goes through all the range devices and checks them.

This goes through all of the registered range devices and locks each, calls current-
ReadingPolar on it, and then unlocks it.

Gets the closest reading in a region defined by startAngle going to endAngle...
going counterclockwise (neg degrees to poseitive... with how the robot is set up,
thats counterclockwise)... from -180 to 180... this means if you want the slice
between 0 and 10 degrees, you must enter it as 0, 10, if you do 10, 0 you’ll get
the 350 degrees between 10 and 0... be especially careful with negative... for
example -30 to -60 is everything from -30, around through 0, 90, and 180 back
to -60... since -60 is actually to clockwise of -30

Parameters:
startAngle where to start the slice

endAngle where to end the slice, going clockwise from startAngle

angle a pointer return of the angle to the found reading

Returns:
if the return is >= 0 then this is the distance to the closest reading, if it is
< 0 then there were no readings in the given region

4.103.4.21 void ArRobot::clearDirectMotion (void)

Clears what direct motion commands have been given, so actions work.

This clears the direct motion commands so that actions will be allowed to control
the robot again.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

390 Aria Class Documentation

See also:
setDirectMotionPrecedenceTime (p. 411) , getDirectMotion-
PrecedenceTime (p. 396)

4.103.4.22 bool ArRobot::com (unsigned char command)

Sends a command to the robot with no arguments.

Parameters:
command the command number to send

Returns:
whether the command could be sent or not

4.103.4.23 bool ArRobot::com2Bytes (unsigned char command,
char high, char low)

Sends a command to the robot with two bytes for argument.

Parameters:
command the command number to send

high the high byte to send with the command

low the low byte to send with the command

Returns:
whether the command could be sent or not

4.103.4.24 bool ArRobot::comInt (unsigned char command, short
int argument)

Sends a command to the robot with an int for argument.

Parameters:
command the command number to send

argument the integer argument to send with the command

Returns:
whether the command could be sent or not

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 391

4.103.4.25 bool ArRobot::comStr (unsigned char command, const
char ∗ argument)

Sends a command to the robot with a string for argument.

Parameters:
command the command number to send
str the string to send with the command

Returns:
whether the command could be sent or not

4.103.4.26 bool ArRobot::comStrN (unsigned char command, const
char ∗ str, int size)

Sends a command to the robot with a size bytes of str as argument.

Parameters:
command the command number to send
str the character array to send with the command
size length of the array to send

Returns:
whether the command could be sent or not

4.103.4.27 void ArRobot::disableMotors ()

Disables the motors on the robot.

This command disables the motors on the robot, if it is connected.

4.103.4.28 bool ArRobot::disconnect (void)

Disconnects from a robot.

Disconnects from a robot. This also calls of the DisconnectNormally Callback
Functors if the robot was actually connected to a robot when this member was
called.

Returns:
true if not connected to a robot (so no disconnect can happen, but it didn’t
failed either), also true if the command could be sent to the robot (ie
connection hasn’t failed)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

392 Aria Class Documentation

4.103.4.29 void ArRobot::enableMotors ()

Enables the motors on the robot.

This command enables the motors on the robot, if it is connected.

4.103.4.30 ArAction ∗ ArRobot::findAction (const char ∗
actionName)

Returns the first (highest priority) action with the given name (or NULL).

Finds the action with the given name... if more than one action has that name
it find the one with the highest priority

Parameters:
actionName the name of the action we want to find

Returns:
the action, if found. If not found, NULL

4.103.4.31 ArRangeDevice ∗ ArRobot::findRangeDevice (const
char ∗ name)

Finds a rangeDevice in the robot’s list.

Parameters:
name return the first device with this name

Returns:
if found, a range device with the given name, if not found NULL

4.103.4.32 const ArRangeDevice ∗ ArRobot::findRangeDevice
(const char ∗ name) const

Finds a rangeDevice in the robot’s list.

Parameters:
name return the first device with this name

Returns:
if found, a range device with the given name, if not found NULL

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 393

4.103.4.33 ArSyncTask ∗ ArRobot::findTask (ArFunctor ∗ functor)

Finds a task by functor.

Finds a task by its functor, searching the entire space of tasks

Returns:
NULL if no task with that functor found, otherwise a pointer to the Ar-
SyncTask (p. 499) for the first task found with that functor

4.103.4.34 ArSyncTask ∗ ArRobot::findTask (const char ∗ name)

Finds a task by name.

Finds a task by its name, searching the entire space of tasks

Returns:
NULL if no task of that name found, otherwise a pointer to the ArSync-
Task (p. 499) for the first task found with that name

4.103.4.35 ArSyncTask ∗ ArRobot::findUserTask (ArFunctor ∗
functor)

Finds a user task by functor.

Finds a user task by its functor, searching the entire space of tasks

Returns:
NULL if no user task with that functor found, otherwise a pointer to the
ArSyncTask (p. 499) for the first task found with that functor

4.103.4.36 ArSyncTask ∗ ArRobot::findUserTask (const char ∗
name)

Finds a user task by name.

Finds a user task by its name, searching the entire space of tasks

Returns:
NULL if no user task of that name found, otherwise a pointer to the Ar-
SyncTask (p. 499) for the first task found with that name

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

394 Aria Class Documentation

4.103.4.37 ArResolver::ActionMap ∗ ArRobot::getActionMap
(void)

Returns the map of actions... don’t do this unless you really know what you’re
doing.

This returns the actionMap the robot has... do not mess with this list except
by using ArRobot::addAction (p. 381) and ArRobot::remAction (p. 404)...
This is jsut for the things like ArActionGroup (p. 63) that want to deactivate
or activate all the actions (well, only deactivating everything makes sense).

Returns:
the actions the robot is using

4.103.4.38 double ArRobot::getBatteryVoltage (void) const
[inline]

Gets the battery voltage of the robot.

This value is averaged over a number of readings, you can get this by calling
getBatteryVoltageAverageOfNum and set this with setBatteryVoltageAverage-
OfNum... you can call getBatteryVoltageNow to get the reading from the last
packet.

4.103.4.39 unsigned int ArRobot::getConnectionCycleMultiplier
(void) const

Gets the multiplier for how many cycles ArRobot waits when connecting.

Returns:
when the ArRobot is waiting for a connection packet back from a robot, it
waits for this multiplier times the cycle time for the packet to come back
before it gives up on it... This should be small for normal connections but if
doing something over a slow network then you may want to make it larger

4.103.4.40 int ArRobot::getConnectionTimeoutTime (void) const

Gets the time without a response until connection assumed lost.

Gets the number of seconds to go without response from the robot until it is
assumed tha tthe connection with the robot has been broken and the disconnect
on error events will happen.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 395

4.103.4.41 double ArRobot::getControl (void) const [inline]

Gets the control heading.

Gets the control heading as an offset from the current heading.

See also:
getTh (p. 365)

4.103.4.42 unsigned int ArRobot::getCycleTime (void) const

Gets the number of ms between cycles.

Finds the number of milliseconds between cycles, at each cycle is when all
packets are processed, all sensors are interpretted, all actions are called, and all
user tasks are serviced. Be warned, if you set this too small you could overflow
your serial connection.

Returns:
the number of milliseconds between cycles

4.103.4.43 unsigned int ArRobot::getCycleWarningTime (void)

Gets the number of ms between cycles to warn over.

Sets a time such that if the number of milliseconds between cycles goes over this
then there will be an ArLog::log(ArLog::Normal) warning.

Returns:
the number of milliseconds between cycles to warn over, 0 means warning
is off

4.103.4.44 unsigned int ArRobot::getCycleWarningTime (void)
const

Gets the number of ms between cycles to warn over.

Sets a time such that if the number of milliseconds between cycles goes over this
then there will be an ArLog::log(ArLog::Normal) warning.

Returns:
the number of milliseconds between cycles to warn over, 0 means warning
is off

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

396 Aria Class Documentation

4.103.4.45 ArDeviceConnection ∗ ArRobot::getDeviceConnection
(void) const

Gets the connection this instance uses.

Gets the connection this instance uses to the actual robot. This is where com-
mands will be sent and packets will be received from

Returns:
the deviceConnection used for this robot

See also:
ArDeviceConnection (p. 137) , ArSerialConnection (p. 444) , ArTcp-
Connection (p. 507)

4.103.4.46 unsigned int ArRobot::getDirectMotionPrecedenceTime
(void) const

Gets the length of time a direct motion command will take precedence over
actions, in milliseconds.

The direct motion precedence time determines how long actions will be ignored
after a direct motion command is given. If the direct motion precedence time is
0, then direct motion will take precedence over actions until a clearDirectMotion
command is issued. This value defaults to 0.

Returns:
the number of milliseconds direct movement will trump actions

See also:
setDirectMotionPrecedenceTime (p. 411) , clearDirectMotion
(p. 389)

4.103.4.47 ArRetFunctor1< double, ArPoseWithTime > ∗
ArRobot::getEncoderCorrectionCallback (void) const

Gets the encoderCorrectionCallback.

This gets the encoderCorrectionCB, see setEncoderCorrectionCallback for de-
tails.

Returns:
the callback, or NULL if there isn’t one

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 397

4.103.4.48 ArTransform ArRobot::getEncoderTransform (void)
const

Gets the encoder transform.

Returns:
the transform from encoder to global coords

4.103.4.49 ArTime ArRobot::getLastPacketTime (void) const

Gets the time the last packet was received.

This gets the ArTime (p. 517) that the last packet was received at

Returns:
the time the last packet was received

4.103.4.50 const ArRobotConfigPacketReader ∗
ArRobot::getOrigRobotConfig (void) const

Gets the original robot config packet information.

Returns:
the ArRobotConfigPacketReader (p. 418) taken when this instance got
connected to the robot

4.103.4.51 int ArRobot::getPoseInterpPosition (ArTime
timeStamp, ArPose ∗ position) [inline]

Gets the position the robot was at at the given timestamp.

See also:
ArInterpolation::getPose (p. 227)

4.103.4.52 std::list< ArRangeDevice ∗> ∗
ArRobot::getRangeDeviceList (void)

Gets the range device list.

This gets the list of range devices attached to this robot, do NOT manipulate
this list directly. If you want to manipulate use the appropriate addRange-
Device, or remRangeDevice

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

398 Aria Class Documentation

Returns:
the list of range dvices attached to this robot

4.103.4.53 const ArRobotParams ∗ ArRobot::getRobotParams
(void) const

Gets the parameters the robot is using.

Returns:
the ArRobotParams (p. 432) instance the robot is using for its parameters

4.103.4.54 int ArRobot::getSonarRange (int num) const

Gets the range of the last sonar reading for the given sonar.

Parameters:
num the sonar number to check, should be between 0 and the number of

sonar, the function won’t fail if a bad number is given, will just return
-1

Returns:
-1 if the sonar has never returned a reading, otherwise the sonar range,
which is the distance from the physical sonar disc to where the sonar
bounced back

See also:
getNumSonar (p. 369)

4.103.4.55 ArSensorReading ∗ ArRobot::getSonarReading (int
num) const

Returns the sonar reading for the given sonar.

Parameters:
num the sonar number to check, should be between 0 and the number of

sonar, the function won’t fail if a bad number is given, will just return
false

Returns:
NULL if there is no sonar defined for the given number, otherwise it returns
a pointer to an instance of the ArSensorReading (p. 439), note that this
class retains ownership, so the instance pointed to should not be deleted

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 399

and no pointers to it should be stored. Note that often there will be sonar
defined but no readings for it (since the readings may be created by the
parameter reader), if there has never been a reading from the sonar then
the range of that sonar will be -1 and its counterTaken value will be 0

4.103.4.56 int ArRobot::getStabilizingTime (void) const

How long we stabilize for in ms (0 means no stabilizng).

This is the amount of time the robot will stabilize for after it has connected to
the robot (it won’t report it is connected until after this time is over).

4.103.4.57 int ArRobot::getStateReflectionRefreshTime (void)
const

Sets the number of milliseconds between state reflection refreshes if the state
has not changed.

The state reflection refresh time is the number of milliseconds between when
the state reflector will refresh the robot, if the command hasn’t changed. The
default is 500 milliseconds. If this number is less than the cyle time, it’ll simply
happen every cycle.

Returns:
the state reflection refresh time

4.103.4.58 ArSyncTask ∗ ArRobot::getSyncTaskRoot (void)

This gets the root of the syncronous task tree, only serious developers should
use it.

This gets the root of the synchronous task tree, so that someone can add their
own new types of tasks, or find out more information about each task... only
serious developers should use this.

Returns:
the root of the sycnhronous task tree

See also:
ArSyncTask (p. 499)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

400 Aria Class Documentation

4.103.4.59 ArTransform ArRobot::getToGlobalTransform (void)
const

This gets the transform from local coords to global coords.

Returns:
an ArTransform (p. 519) which can be used for transforming a position
in local coordinates to one in global coordinates

4.103.4.60 ArTransform ArRobot::getToLocalTransform (void)
const

This gets the transform for going from global coords to local coords.

Returns:
an ArTransform (p. 519) which can be used for transforming a position
in global coordinates to one in local coordinates

4.103.4.61 bool ArRobot::hasRangeDevice (ArRangeDevice ∗
device) const

Finds whether a particular range device is attached to this robot or not.

Parameters:
device the device to check for

4.103.4.62 void ArRobot::init (void)

Internal function, shouldn’t be used.

Sets up the packet handlers, sets up the sync list and makes the default priority
resolver.

4.103.4.63 bool ArRobot::isConnected (void) const [inline]

Questions whether the robot is connected or not.

Returns:
true if connected to a robot, false if not

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 401

4.103.4.64 bool ArRobot::isDirectMotion (void) const

Returns true if direct motion commands are blocking actions.

Returns the state of direct motion commands: whether actions are allowed or
not

See also:
clearDirectMotion (p. 389)

4.103.4.65 bool ArRobot::isHeadingDone (double delta = 0.0)
const

Sees if the robot is done changing to the previously given setHeading.

Determines if a setHeading command is finished, to within a small distance. If
delta = 0 (default), the delta distance is what was set with setHeadingDoneDiff,
you can get the distnace with getHeadingDoneDiff

Parameters:
delta how close to the goal distance the robot must be

Returns:
true if the robot has achieved the heading given in a move command or if
the robot is no longer in heading mode mode (because its now running off
of actions, setDHeading, or setRotVel was called).

4.103.4.66 bool ArRobot::isMoveDone (double delta = 0.0)

Sees if the robot is done moving the previously given move.

Determines if a move command is finished, to within a small distance. If delta
= 0 (default), the delta distance is what was set with setMoveDoneDist, you
can get the distnace with getMoveDoneDist

Parameters:
delta how close to the goal distance the robot must be

Returns:
true if the robot has finished the distance given in a move command or
if the robot is no longer in a move mode (because its now running off of
actions, setVel, or setVel2 was called).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

402 Aria Class Documentation

4.103.4.67 bool ArRobot::isRunning (void) const

Returns whether the robot is currently running or not.

Returns:
true if the robot is currently running in a run or runAsync, otherwise false

4.103.4.68 bool ArRobot::isSonarNew (int num) const

Find out if the given sonar has a new reading.

Parameters:
num the sonar number to check, should be between 0 and the number of

sonar, the function won’t fail if a bad number is given, will just return
false

Returns:
false if the sonar reading is old, or if there is no reading from that sonar

4.103.4.69 bool ArRobot::loadParamFile (const char ∗ file)

Loads a parameter file (replacing all other params).

Returns:
true if the file could be loaded, false otherwise

4.103.4.70 void ArRobot::logAllTasks (void) const

Logs the list of all tasks, strictly for your viewing pleasure.

See also:
ArLog (p. 247)

4.103.4.71 void ArRobot::logUserTasks (void) const

Logs the list of user tasks, strictly for your viewing pleasure.

See also:
ArLog (p. 247)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 403

4.103.4.72 void ArRobot::loopOnce (void)

This function loops once... only serious developers should use it.

This function is only for serious developers, it basically runs the loop once. You
would use this function if you were wanting to use robot control in some other
monolithic program, so you could work within its framework, rather than trying
to get it to work in ARIA.

4.103.4.73 void ArRobot::move (double distance)

Move the given distance forward/backwards

See also:
clearDirectMotion (p. 389).

Tells the robot to move the specified distance forward/backwards, it caches this
value, and sends it during the next cycle.

Parameters:
distance the distance for the robot to move

4.103.4.74 void ArRobot::moveTo (ArPose poseTo, ArPose
poseFrom, bool doCumulative = true)

Moves the robot’s RW position to reflect pose From => pose To.

Parameters:
poseTo the absolute real world position to move to

poseFrom the original absolute real world position

doCumulative whether to update the cumulative buffers or not

4.103.4.75 void ArRobot::moveTo (ArPose pose, bool doCumulative
= true)

Moves the robot’s idea of its position to this position.

Parameters:
pose the absolute real world position to place the robot

doCumulative whether to update the cumulative buffers or not

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

404 Aria Class Documentation

4.103.4.76 void ArRobot::packetHandler (void)

Packet Handler, internal.

Reads in all of the packets that are available to read in, then runs through the
list of packet handlers and tries to get each packet handled.

See also:
addPacketHandler (p. 383) , remPacketHandler (p. 405)

4.103.4.77 bool ArRobot::remAction (const char ∗ actionName)

Removes an action from the list, by name.

Finds the action with the given name and removes it from the actions... if more
than one action has that name it find the one with the lowest priority

Parameters:
actionName the name of the action we want to find

Returns:
whether remAction found anything with that action to remove or not

4.103.4.78 bool ArRobot::remAction (ArAction ∗ action)

Removes an action from the list, by pointer.

Finds the action with the given pointer and removes it from the actions... if
more than one action has that pointer it find the one with the lowest priority

Parameters:
action the action we want to remove

Returns:
whether remAction found anything with that action to remove or not

4.103.4.79 void ArRobot::remConnectCB (ArFunctor ∗ functor)

Adds a disconnect callback.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addConnectCB (p. 381)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 405

4.103.4.80 void ArRobot::remDisconnectNormallyCB (ArFunctor ∗
functor)

Removes a callback for when disconnect is called while connected.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addDisconnectNormallyCB (p. 381)

4.103.4.81 void ArRobot::remDisconnectOnErrorCB (ArFunctor ∗
functor)

Removes a callback for when disconnection happens because of an error.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addDisconnectOnErrorCB (p. 382)

4.103.4.82 void ArRobot::remFailedConnectCB (ArFunctor ∗
functor)

Removes a callback for when a connection to the robot is failed.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addFailedConnectCB (p. 382)

4.103.4.83 void ArRobot::remPacketHandler (ArRetFunctor1<
bool, ArRobotPacket ∗> ∗ functor)

Removes a packet handler from the list of packet handlers.

Parameters:
functor the functor to remove from the list of packet handlers

See also:
addPacketHandler (p. 383)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

406 Aria Class Documentation

4.103.4.84 void ArRobot::remRangeDevice (ArRangeDevice ∗
device)

Remove a range device from the robot’s list, by instance.

Parameters:
device remove the first device with this pointer value

4.103.4.85 void ArRobot::remRangeDevice (const char ∗ name)

Remove a range device from the robot’s list, by name.

Parameters:
name remove the first device with this name

4.103.4.86 void ArRobot::remRunExitCB (ArFunctor ∗ functor)

Removes a callback for when the run loop exits for what ever reason.

Parameters:
functor the functor to remove from the list of run exit callbacks

See also:
addRunExitCB (p. 383)

4.103.4.87 void ArRobot::remSensorInterpTask (ArFunctor ∗
functor)

Removes a sensor interp tasks by functor.

See also:
addSensorInterpTask (p. 384) , remSensorInterpTask(std::string name)

4.103.4.88 void ArRobot::remSensorInterpTask (const char ∗
name)

Removes a sensor interp tasks by name.

See also:
addSensorInterpTask (p. 384) , remSensorInterpTask(ArFunctor
∗functor) (p. 406)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 407

4.103.4.89 void ArRobot::remStabilizingCB (ArFunctor ∗ functor)

Removes stabilizing callback.

Parameters:
functor the functor to remove from the list of stabilizing callbacks

See also:
addConnectCB (p. 381)

4.103.4.90 void ArRobot::remUserTask (ArFunctor ∗ functor)

Removes a user task from the list of synchronous taskes by functor.

See also:
addUserTask (p. 384) , remUserTask(std::string name)

4.103.4.91 void ArRobot::remUserTask (const char ∗ name)

Removes a user task from the list of synchronous taskes by name.

See also:
addUserTask (p. 384) , remUserTask(ArFunctor ∗functor) (p. 407)

4.103.4.92 void ArRobot::robotLocker (void)

Robot locker, internal.

This just locks the robot, so that its locked for all the user tasks

4.103.4.93 void ArRobot::robotUnlocker (void)

Robot unlocker, internal.

This just unlocks the robot

4.103.4.94 void ArRobot::run (bool stopRunIfNotConnected)

Starts the instance to do processing in this thread.

This starts the list of tasks to be run through until stopped. This function
doesn’t return until something calls stop on this instance.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

408 Aria Class Documentation

Parameters:
stopRunIfNotConnected if true, the run will return if there is no con-

nection to the robot at any given point, this is good for one-shot
programs... if it is false the run won’t return unless stop is called on
the instance

4.103.4.95 void ArRobot::runAsync (bool stopRunIfNotConnected)

Starts the instance to do processing in its own new thread.

This starts a new thread then has runs through the tasks until stopped. This
function doesn’t return until something calls stop on this instance. This function
returns immediately

Parameters:
stopRunIfNotConnected if true, the run will stop if there is no con-

nection to the robot at any given point, this is good for one-shot
programs... if it is false the run won’t stop unless stop is called on the
instance

4.103.4.96 bool ArRobot::setAbsoluteMaxRotVel (double maxVel)

Sets the robots absolute maximum rotational velocity.

This sets the absolute maximum velocity the robot will go... the maximum
velocity can also be set by the actions and by setRotVelMax, but it will not be
allowed to go higher than this value. You should not set this very often, if you
want to manipulate this value you should use the actions or setRotVelMax.

Parameters:
maxVel the maximum velocity to be set, it must be a non-zero number

Returns:
true if the value is good, false othrewise

4.103.4.97 bool ArRobot::setAbsoluteMaxTransVel (double
maxVel)

Sets the robots absolute maximum translational velocity.

This sets the absolute maximum velocity the robot will go... the maximum
velocity can also be set by the actions and by setTransVelMax, but it will not
be allowed to go higher than this value. You should not set this very often, if you
want to manipulate this value you should use the actions or setTransVelMax.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 409

Parameters:
maxVel the maximum velocity to be set, it must be a non-zero number

Returns:
true if the value is good, false othrewise

4.103.4.98 void ArRobot::setConnectionCycleMultiplier (unsigned
int multiplier)

Sets the multiplier for how many cycles ArRobot waits when connecting.

Parameters:
multiplier when the ArRobot is waiting for a connection packet back from

a robot, it waits for this multiplier times the cycle time for the packet
to come back before it gives up on it... This should be small for normal
connections but if doing something over a slow network then you may
want to make it larger

4.103.4.99 void ArRobot::setConnectionTimeoutTime (int mSecs)

Sets the time without a response until connection assumed lost.

Sets the number of seconds to go without a response from the robot until it is
assumed that the connection with the robot has been broken and the disconnect
on error events will happen. Note that this will only happen with the default
packet handler.

Parameters:
seconds if seconds is 0 then the connection timeout feature will be dis-

abled, otherwise disconnect on error will be triggered after this number
of seconds...

4.103.4.100 void ArRobot::setCycleTime (unsigned int ms)

Sets the number of ms between cycles.

Sets the number of milliseconds between cycles, at each cycle is when all packets
are processed, all sensors are interpretted, all actions are called, and all user
tasks are serviced. Be warned, if you set this too small you could overflow your
serial connection.

Parameters:
ms the number of milliseconds between cycles

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

410 Aria Class Documentation

4.103.4.101 void ArRobot::setCycleWarningTime (unsigned int
ms)

Sets the number of ms between cycles to warn over.

Sets a time such that if the number of milliseconds between cycles goes over this
then there will be an ArLog::log(ArLog::Normal) warning.

Parameters:
ms the number of milliseconds between cycles to warn over, 0 turns warn-

ing off

4.103.4.102 void ArRobot::setDeadReconPose (ArPose pose)

Sets the dead recon position of the robot.

Parameters:
pose the position to set the dead recon position to

4.103.4.103 void ArRobot::setDeltaHeading (double deltaHeading)

Sets the delta heading

See also:
clearDirectMotion (p. 389).

Sets a delta heading to the robot, it caches this value, and sends it during the
next cycle.

Parameters:
deltaHeading the desired amount to change the heading of the robot by

4.103.4.104 void ArRobot::setDeviceConnection
(ArDeviceConnection ∗ connection)

Sets the connection this instance uses.

Sets the connection this instance uses to the actual robot. This is where com-
mands will be sent and packets will be received from

Parameters:
connection The deviceConnection to use for this robot

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 411

See also:
ArDeviceConnection (p. 137), ArSerialConnection (p. 444), ArTcp-
Connection (p. 507)

4.103.4.105 void ArRobot::setDirectMotionPrecedenceTime (int
mSec)

Sets the length of time a direct motion command will take precedence over
actions, in milliseconds.

The direct motion precedence time determines how long actions will be ignored
after a direct motion command is given. If the direct motion precedence time is
0, then direct motion will take precedence over actions until a clearDirectMotion
command is issued. This value defaults to 0.

Parameters:
the number of milliseconds direct movement should trump actions, if a

negative number is given, then the value will be 0

See also:
setDirectMotionPrecedenceTime (p. 411) , clearDirectMotion
(p. 389)

4.103.4.106 void ArRobot::setEncoderCorrectionCallback
(ArRetFunctor1< double, ArPoseWithTime > ∗
functor)

Sets the encoderCorrectionCallback.

This sets the encoderCorrectionCB, this callback returns the robots change in
heading, it takes in the change in heading, x, and y, between the previous and
current readings.

Parameters:
functor an ArRetFunctor1 (p. 335) created as an ArRetFunctor1C

(p. 337), that will be the callback... call this function NULL to clear
the callback

See also:
getEncoderCorrectionCallback (p. 396)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

412 Aria Class Documentation

4.103.4.107 void ArRobot::setEncoderTransform (ArPose
transformPos)

Changes the transform directly.

Parameters:
transformPos the position to transform to

4.103.4.108 void ArRobot::setEncoderTransform (ArPose
deadReconPos, ArPose globalPos)

Changes the transform.

Parameters:
deadReconPos the dead recon position to transform from
realWorldPos the real world global position to transform to

4.103.4.109 void ArRobot::setHeading (double heading)

Sets the heading

See also:
clearDirectMotion (p. 389).

Sets the heading of the robot, it caches this value, and sends it during the next
cycle.

Parameters:
heading the desired heading of the robot

4.103.4.110 void ArRobot::setRotVel (double velocity)

Sets the rotational velocity

See also:
clearDirectMotion (p. 389).

Sets the rotational velocity of the robot, it caches this value, and sends it during
the next cycle.

Parameters:
velocity the desired rotational velocity of the robot

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 413

4.103.4.111 void ArRobot::setStabilizingTime (int mSecs)

How long we should stabilize for in ms (0 disables stabilizing).

This is the amount of time the robot will stabilize for after it has connected
to the robot (it won’t report it is connected until after this time is over). By
convention you should never set this lower than what you find the value at
(though it will let you) this is so that everything can get itself stabilized before
we let things drive.

Parameters:
mSecs the amount of time to stabilize for (0 disables)

See also:
addStabilizingCB (p. 384)

4.103.4.112 void ArRobot::setStateReflectionRefreshTime (int
mSec)

Sets the number of milliseconds between state reflection refreshes if the state
has not changed.

The state reflection refresh time is the number of milliseconds between when
the state reflector will refresh the robot, if the command hasn’t changed. The
default is 500 milliseconds. If this number is less than the cyle time, it’ll simply
happen every cycle.

Parameters:
mSec the refresh time, in milliseconds, non-negative, if negative is given,

then the value will be 0

4.103.4.113 void ArRobot::setVel (double velocity)

Sets the velocity

See also:
clearDirectMotion (p. 389).

Sets the velocity of the robot, it caches this value, and sends it during the next
cycle.

Parameters:
velocity the desired translational velocity of the robot

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

414 Aria Class Documentation

4.103.4.114 void ArRobot::setVel2 (double leftVelocity, double
rightVelocity)

Sets the velocity of the wheels independently

See also:
clearDirectMotion (p. 389).

Sets the velocity of each of the wheels on the robot independently. it caches
this value, and sends it during the next cycle. Note that this cancels both
translational velocity AND rotational velocity, and is canceled by any of the
other direct motion commands.

Parameters:
leftVelocity the desired velocity of the left wheel

rightVelocity the desired velocity of the right wheel

4.103.4.115 void ArRobot::stateReflector (void)

State Reflector, internal.

If state reflecting (really direct motion command reflecting) was enabled in the
constructor (ArRobot::ArRobot (p. 380)) then this will see if there are any
direct motion commands to send, and if not then send the command given by
the actions. If state reflection is disabled this will send a pulse to the robot
every state reflection refresh time (setStateReflectionRefreshTime), if you don’t
wish this to happen simply set this to a very large value.

4.103.4.116 void ArRobot::stop (void)

Stops the robot

See also:
clearDirectMotion (p. 389).

Stops the robot, by telling it to have a translational velocity and rotational
velocity of 0. Also note that if you are using actions, this will cause the actions
to be ignored until the direct motion precedence timeout has been exceeded or
clearDirectMotion is called.

See also:
setDirectMotionPrecedenceTime (p. 411) , getDirectMotion-
PrecedenceTime (p. 396) , clearDirectMotion (p. 389)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 415

4.103.4.117 void ArRobot::stopRunning (bool doDisconnect =
true)

Stops the robot from doing any more processing.

This stops this robot from running anymore. If it is stopping from a runAsync
it will cause the thread to return (exit), if it is running from a normal run, it
will just cause the run function to return.

Parameters:
doDisconnect Disconnect from the robot. Defaulted to true.

4.103.4.118 ArRobot::WaitState ArRobot::waitForConnect
(unsigned int msecs = 0)

Suspend calling thread until the ArRobot is connected.

This will suspend the calling thread until the ArRobot’s run loop has managed
to connect with the robot. There is an optional paramater of milliseconds to
wait for the ArRobot to connect. If msecs is set to 0, it will wait until the
ArRobot connects. This function will never return if the robot can not be
connected with. If you want to be able to handle that case within the calling
thread, you must call waitForConnectOrConnFail() (p. 415).

Parameters:
msecs milliseconds in which to wait for the ArRobot to connect

Returns:
WAIT CONNECTED for success

See also:
waitForConnectOrConnFail (p. 415) , wakeAllWaitingThreads
(p. 417) , wakeAllConnWaitingThreads (p. 416) , wakeAllRunExit-
WaitingThreads (p. 417)

4.103.4.119 ArRobot::WaitState ArRobot::waitFor-
ConnectOrConnFail (unsigned int msecs =
0)

Suspend calling thread until the ArRobot is connected or fails to connect.

This will suspend the calling thread until the ArRobot’s run loop has managed
to connect with the robot or fails to connect with the robot. There is an optional
paramater of milliseconds to wait for the ArRobot to connect. If msecs is set to
0, it will wait until the ArRobot connects.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

416 Aria Class Documentation

Parameters:
msecs milliseconds in which to wait for the ArRobot to connect

Returns:
WAIT CONNECTED for success

See also:
waitForConnect (p. 415)

4.103.4.120 ArRobot::WaitState ArRobot::waitForRunExit
(unsigned int msecs = 0)

Suspend calling thread until the ArRobot run loop has exited.

This will suspend the calling thread until the ArRobot’s run loop has exited.
There is an optional paramater of milliseconds to wait for the ArRobot run loop
to exit . If msecs is set to 0, it will wait until the ArRrobot run loop exits.

Parameters:
msecs milliseconds in which to wait for the robot to connect

Returns:
WAIT RUN EXIT for success

4.103.4.121 void ArRobot::wakeAllConnOrFailWaitingThreads ()

Wake up all threads waiting for connection or connection failure.

This will wake all the threads waiting for the robot to be connected or waiting
for the robot to fail to connect.

See also:
wakeAllWaitingThreads (p. 417) , wakeAllRunExitWaiting-
Threads (p. 417)

4.103.4.122 void ArRobot::wakeAllConnWaitingThreads ()

Wake up all threads waiting for connection.

This will wake all the threads waiting for the robot to be connected.

See also:
wakeAllWaitingThreads (p. 417) , wakeAllRunExitWaiting-
Threads (p. 417)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.103 ArRobot Class Reference 417

4.103.4.123 void ArRobot::wakeAllRunExitWaitingThreads ()

Wake up all threads waiting for the run loop to exit.

This will wake all the threads waiting for the run loop to exit.

See also:
wakeAllWaitingThreads (p. 417) , wakeAllConnWaitingThreads
(p. 416)

4.103.4.124 void ArRobot::wakeAllWaitingThreads ()

Wake up all threads waiting on this robot.

This will wake all the threads waiting for various major state changes in this par-
ticular ArRobot. This includes all threads waiting for the robot to be connected
and all threads waiting for the run loop to exit.

See also:
wakeAllConnWaitingThreads (p. 416) , wakeAllRunExitWaiting-
Threads (p. 417)

The documentation for this class was generated from the following files:

• ArRobot.h
• ArRobot.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

418 Aria Class Documentation

4.104 ArRobotConfigPacketReader Class Ref-
erence

This class will read a config packet from the robot.

#include <ArRobotConfigPacketReader.h>

Public Methods

• ArRobotConfigPacketReader (ArRobot ∗robot, bool onlyOne-
Request=false)

Constructor.

• ∼ArRobotConfigPacketReader ()

Destructor.

• bool requestPacket (void)

Request a packet.. true if we could, false if onlyOneRequest already done.

• bool hasPacketBeenRequested (void) const

See if we’ve requested a packet yet.

• bool hasPacketArrived (void) const

See if we’ve gotten the data.

• void log (void)

Log the config.

• const char ∗ getType (void) const

Gets the type of robot.

• const char ∗ getSubType (void) const

Gets the subtype of robot.

• const char ∗ getSerialNumber (void) const

Gets the serial number of the robot.

• int getRotVelTop (void) const

Gets the absolute maximum rotational velocity in deg/sec (cannot be set above
this in firmware or through software).

• int getTransVelTop (void) const

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.104 ArRobotConfigPacketReader Class Reference 419

Gets the absolute maximum translational velocity in mm/sec (cannot be set
above this in firmware or through software).

• int getRotAccelTop (void) const
Gets the absolute maximum rotational acceleration in deg/sec/sec (cannot be
set above this in firmware or through software).

• int getTransAccelTop (void) const
Gets the absolute maximum translational acceleration in mm/sec/sec (cannot
be set above this in firmware or through software).

• int getPwmMax (void) const
Gets the maximum PWM the robot will have (stallval cannot be above this).

• const char ∗ getName (void) const
Gets the name of the robot.

• int getSipCycleTime (void) const
Gets the cycle time in ms of the motor packets.

• int getHostBaud (void) const
Gets the host baud number, look at the manual for what these mean.

• int getAux1Baud (void) const
Gets the host baud number, look at the manual for what these mean.

• bool getHasGripper (void) const
Gets the gripper value (whether or not the robot has a gripper).

• bool getFrontSonar (void) const
Gets whether or not the robot has front sonar.

• bool getRearSonar (void) const
Gets whether or not the robot has rear sonar.

• int getLowBattery (void) const
Gets the low battery beeping indicating voltage times 10.

• int getRevCount (void) const
Gets the revcount.

• int getWatchdog (void) const
Gets the watchdog (how many ms after command robot stops).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

420 Aria Class Documentation

• bool getNormalMPacs (void) const
Returns if the robot is using normal packets or new style packets.

• int getStallVal (void) const
Returns the stallval (pwms at which robot stalls).

• int getStallCount (void) const
Returns the stallcount (how many 10ms increments robot stops after stall).

• int getJoyVel (void) const
Returns the joystick translational velocity.

• int getJoyRotVel (void) const
Returns the joystick rotational velocity.

• int getRotVelMax (void) const
Returns the current maximum rotational velocity (deg/sec) (can be set).

• int getTransVelMax (void) const
Returns the current maximum translational velocity (mm/sec) (can be set).

• int getRotAccel (void) const
Returns the rotational acceleration.

• int getRotDecel (void) const
Returns the rotational deceleration.

• int getRotKP (void) const
Returns the rotational KP value (look at the manual).

• int getRotKV (void) const
Returns the rotational KV value (look at the manual).

• int getRotKI (void) const
Returns the rotational KI value (look at the manual).

• int getTransAccel (void) const
Returns the translational acceleration.

• int getTransDecel (void) const
Returns the rotational deceleration.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.104 ArRobotConfigPacketReader Class Reference 421

• int getTransKP (void) const

Returns the translational KP value (look at the manual).

• int getTransKV (void) const

Returns the translational KV value (look at the manual).

• int getTransKI (void) const

Returns the translational KI value (look at the manual).

• int getFrontBumps (void) const

Returns the number of front bumpers.

• int getRearBumps (void) const

Returns the number of rear bumpers.

• bool getHasCharger (void) const

Returns whether the robot has a charger.

• int getSonarCycle (void) const

Returns the number of ms the sonar cycle is (default is 40).

• bool getResetBaud (void) const

Returns the number of ms the sonar cycle is (default is 40).

• bool getHasGyro (void) const

Returns if the robot has a gyro or not.

• bool packetHandler (ArRobotPacket ∗packet)

internal, packet handler.

• void connected (void)

internal, connection callback.

4.104.1 Detailed Description

This class will read a config packet from the robot.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

422 Aria Class Documentation

4.104.2 Constructor & Destructor Documentation

4.104.2.1 ArRobotConfigPacketReader::ArRobotConfigPacket-
Reader (ArRobot ∗ robot, bool onlyOneRequest =
false)

Constructor.

Parameters:
robot is the robot to connect this to

onlyOneRequest if this is true then only one request for a packet will ever
be honored (so that you can save the settings from one point in time)

The documentation for this class was generated from the following files:

• ArRobotConfigPacketReader.h
• ArRobotConfigPacketReader.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.105 ArRobotPacket Class Reference 423

4.105 ArRobotPacket Class Reference

Represents the packets sent to the robot as well as those received from it.

#include <ArRobotPacket.h>

Inheritance diagram for ArRobotPacket::

ArRobotPacket

ArBasePacket

Public Methods

• ArRobotPacket (unsigned char sync1=0xfa, unsigned char
sync2=0xfb)

Constructor.

• virtual ∼ArRobotPacket ()
Destructor.

• bool verifyCheckSum (void)
returns true if the checksum matches what it should be.

• ArTypes::UByte getID (void)
returns the ID of the packet.

• void setID (ArTypes::UByte id)
Sets the ID of the packet.

• ArTypes::Byte2 calcCheckSum (void)
returns the checksum, probably used only internally.

• virtual void finalizePacket (void)
MakeFinals the packet in preparation for sending, must be done.

• ArTime getTimeReceived (void)
Gets the time the packet was received at.

• void setTimeReceived (ArTime timeReceived)
Sets the time the packet was received at.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

424 Aria Class Documentation

4.105.1 Detailed Description

Represents the packets sent to the robot as well as those received from it.

This class reimplements some of the buf operations since the robot is opposeite
endian from intel. Also has the getID for convenience.

You can just look at the documentation for the ArBasePacket (p. 121) except
for the 4 new functions here, verifyCheckSum, getID, print, and calcCheckSum.

4.105.2 Constructor & Destructor Documentation

4.105.2.1 ArRobotPacket::ArRobotPacket (unsigned char sync1 =
0xfa, unsigned char sync2 = 0xfb)

Constructor.

Parameters:
sync1 first byte of the header of this packet, this should be left as the

default in nearly all cases, ie don’t mess with it

sync2 second byte of the header of this packet, this should be left as the
default in nearly all cases, ie don’t mess with it

The documentation for this class was generated from the following files:

• ArRobotPacket.h
• ArRobotPacket.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.106 ArRobotPacketReceiver Class Reference 425

4.106 ArRobotPacketReceiver Class Reference

Given a device connection it receives packets from the robot through it.

#include <ArRobotPacketReceiver.h>

Public Methods

• ArRobotPacketReceiver (bool allocatePackets=false, unsigned char
sync1=0xfa, unsigned char sync2=0xfb)

Constructor without an already assigned device connection.

• ArRobotPacketReceiver (ArDeviceConnection ∗deviceConnection,
bool allocatePackets=false, unsigned char sync1=0xfa, unsigned char
sync2=0xfb)

Constructor with assignment of a device connection.

• virtual ∼ArRobotPacketReceiver ()

Destructor.

• ArRobotPacket ∗ receivePacket (unsigned int msWait=0)

Receives a packet from the robot if there is one available.

• void setDeviceConnection (ArDeviceConnection ∗device-
Connection)

Sets the device this instance receives packets from.

• ArDeviceConnection ∗ getDeviceConnection (void)

Gets the device this instance receives packets from.

• bool isAllocatingPackets (void)

Gets whether or not the receiver is allocating packets.

4.106.1 Detailed Description

Given a device connection it receives packets from the robot through it.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

426 Aria Class Documentation

4.106.2 Constructor & Destructor Documentation

4.106.2.1 ArRobotPacketReceiver::ArRobotPacketReceiver (bool
allocatePackets = false, unsigned char sync1 = 0xfa,
unsigned char sync2 = 0xfb)

Constructor without an already assigned device connection.

Parameters:
allocatePackets whether to allocate memory for the packets before re-

turning them (true) or to just return a pointer to an internal packet
(false)... most everything should use false as this will help prevent
many memory leaks or corruptions

sync1 first byte of the header this receiver will receive, this should be left
as the default in nearly all cases, ie don’t mess with it

sync2 second byte of the header this receiver will receive, this should be
left as the default in nearly all cases, ie don’t mess with it

4.106.2.2 ArRobotPacketReceiver::ArRobotPacketReceiver
(ArDeviceConnection ∗ deviceConnection, bool
allocatePackets = false, unsigned char sync1 = 0xfa,
unsigned char sync2 = 0xfb)

Constructor with assignment of a device connection.

Parameters:
deviceConnection the connection which the receiver will use

allocatePackets whether to allocate memory for the packets before re-
turning them (true) or to just return a pointer to an internal packet
(false)... most everything should use false as this will help prevent
many memory leaks or corruptions

sync1 first byte of the header this receiver will receive, this should be left
as the default in nearly all cases, ie don’t mess with it

sync2 second byte of the header this receiver will receive, this should be
left as the default in nearly all cases, ie don’t mess with it

4.106.3 Member Function Documentation

4.106.3.1 ArRobotPacket ∗ ArRobotPacketReceiver::receivePacket
(unsigned int msWait = 0)

Receives a packet from the robot if there is one available.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.106 ArRobotPacketReceiver Class Reference 427

Parameters:
msWait how long to block for the start of a packet, nonblocking if 0

Returns:
NULL if there are no packets in alloted time, otherwise a pointer to the
packet received, if allocatePackets is true than the place that called this
function owns the packet and should delete the packet when done... if
allocatePackets is false then nothing must store a pointer to this packet,
the packet must be used and done with by the time this method is called
again

The documentation for this class was generated from the following files:

• ArRobotPacketReceiver.h
• ArRobotPacketReceiver.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

428 Aria Class Documentation

4.107 ArRobotPacketSender Class Reference

Given a device connection this sends commands through it to the robot.

#include <ArRobotPacketSender.h>

Public Methods

• ArRobotPacketSender (unsigned char sync1=0xfa, unsigned char
sync2=0xfb)

Constructor without an already assigned device connection.

• ArRobotPacketSender (ArDeviceConnection ∗deviceConnection,
unsigned char sync1=0xfa, unsigned char sync2=0xfb)

Constructor with assignment of a device connection.

• virtual ∼ArRobotPacketSender ()

Destructor.

• bool com (unsigned char command)

Sends a command to the robot with no arguments.

• bool comInt (unsigned char command, short int argument)

Sends a command to the robot with an int for argument.

• bool com2Bytes (unsigned char command, char high, char low)

Sends a command to the robot with two bytes for argument.

• bool comStr (unsigned char command, const char ∗argument)

Sends a command to the robot with a string for argument.

• bool comStrN (unsigned char command, const char ∗str, int size)

Sends a command to the robot with a size bytes of str as argument.

• void setDeviceConnection (ArDeviceConnection ∗device-
Connection)

Sets the device this instance sends commands to.

• ArDeviceConnection ∗ getDeviceConnection (void)

Gets the device this instance sends commands to.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.107 ArRobotPacketSender Class Reference 429

4.107.1 Detailed Description

Given a device connection this sends commands through it to the robot.

4.107.2 Constructor & Destructor Documentation

4.107.2.1 ArRobotPacketSender::ArRobotPacketSender (unsigned
char sync1 = 0xfa, unsigned char sync2 = 0xfb)

Constructor without an already assigned device connection.

Parameters:
sync1 first byte of the header this sender will send, this should be left as

the default in nearly all cases, ie don’t mess with it

sync2 second byte of the header this sender will send, this should be left
as the default in nearly all cases, ie don’t mess with it

4.107.2.2 ArRobotPacketSender::ArRobotPacketSender
(ArDeviceConnection ∗ deviceConnection, unsigned char
sync1 = 0xfa, unsigned char sync2 = 0xfb)

Constructor with assignment of a device connection.

Parameters:
sync1 first byte of the header this sender will send, this should be left as

the default in nearly all cases, ie don’t mess with it

sync2 second byte of the header this sender will send, this should be left
as the default in nearly all cases, ie don’t mess with it

4.107.3 Member Function Documentation

4.107.3.1 bool ArRobotPacketSender::com (unsigned char number)

Sends a command to the robot with no arguments.

Parameters:
command the command number to send

Returns:
whether the command could be sent or not

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

430 Aria Class Documentation

4.107.3.2 bool ArRobotPacketSender::com2Bytes (unsigned char
command, char high, char low)

Sends a command to the robot with two bytes for argument.

Parameters:
command the command number to send

high the high byte to send with the command

low the low byte to send with the command

Returns:
whether the command could be sent or not

4.107.3.3 bool ArRobotPacketSender::comInt (unsigned char
command, short int argument)

Sends a command to the robot with an int for argument.

Parameters:
command the command number to send

argument the integer argument to send with the command

Returns:
whether the command could be sent or not

4.107.3.4 bool ArRobotPacketSender::comStr (unsigned char
command, const char ∗ argument)

Sends a command to the robot with a string for argument.

Parameters:
command the command number to send

str the string to send with the command

Returns:
whether the command could be sent or not

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.107 ArRobotPacketSender Class Reference 431

4.107.3.5 bool ArRobotPacketSender::comStrN (unsigned char
command, const char ∗ str, int size)

Sends a command to the robot with a size bytes of str as argument.

Parameters:
command the command number to send

str the character array to send with the command

size length of the array to send

Returns:
whether the command could be sent or not

The documentation for this class was generated from the following files:

• ArRobotPacketSender.h
• ArRobotPacketSender.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

432 Aria Class Documentation

4.108 ArRobotParams Class Reference

Contains the robot parameters, according to the parameter file.

#include <ArRobotParams.h>

Inheritance diagram for ArRobotParams::

ArRobotParams

ArConfig

ArRobotAmigo

ArRobotGeneric

ArRobotMapper

ArRobotP2AT

ArRobotP2AT8

ArRobotP2AT8Plus

ArRobotP2CE

ArRobotP2D8

ArRobotP2D8Plus

ArRobotP2DF

ArRobotP2DX

ArRobotP2DXe

ArRobotP2IT

ArRobotP2PB

ArRobotP2PP

ArRobotP3AT

ArRobotP3DX

ArRobotPerfPB

ArRobotPerfPBPlus

ArRobotPion1M

ArRobotPion1X

ArRobotPionAT

ArRobotPowerBot

ArRobotPsos1M

ArRobotPsos1X

ArRobotPsos43M

Public Methods

• ArRobotParams ()
Constructor.

• virtual ∼ArRobotParams ()
Destructor.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.108 ArRobotParams Class Reference 433

• const char ∗ getClassName (void) const

Returns the class from the parameter file.

• const char ∗ getSubClassName (void) const

Returns the subclass from the parameter file.

• double getRobotRadius (void) const

Returns the robot’s radius.

• double getRobotDiagonal (void) const

Returns the robot diagonal (half-height to diagonal of octagon).

• bool isHolonomic (void) const

Returns whether the robot is holonomic or not.

• bool hasMoveCommand (void) const

Returns if the robot has a built in move command.

• int getAbsoluteMaxVelocity (void) const

Returns the max velocity of the robot.

• int getAbsoluteMaxRotVelocity (void) const

Returns the max rotational velocity of the robot.

• bool getRequestIOPackets (void) const

Returns true if IO packets are automatically requested upon connection to
the robot.

• int getSwitchToBaudRate (void)

Returns the baud rate set in the param to talk to the robot at.

• double getAngleConvFactor (void) const

Returns the angle conversion factor.

• double getDistConvFactor (void) const

Returns the distance conversion factor.

• double getVelConvFactor (void) const

Returns the velocity conversion factor.

• double getRangeConvFactor (void) const

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

434 Aria Class Documentation

Returns the sonar range conversion factor.

• double getDiffConvFactor (void) const
Returns the wheel velocity difference to angular velocity conv factor.

• double getVel2Divisor (void) const
Returns the multiplier for VEL2 commands.

• bool haveTableSensingIR (void) const
Returns true if the robot has table sensing IR.

• bool haveNewTableSensingIR (void) const
Returns true if the robot’s table sensing IR bits are sent in the 4th-byte of
the IO packet.

• bool haveFrontBumpers (void) const
Returns true if the robot has front bumpers.

• int numFrontBumpers (void) const
Returns the number of front bumpers.

• bool haveRearBumpers (void) const
Returns true if the robot has rear bumpers.

• int numRearBumpers (void) const
Returns the number of rear bumpers.

• int getNumSonar (void) const
Returns the number of sonar.

• bool haveSonar (int number)
Returns if the sonar of the given number is valid.

• int getSonarX (int number)
Returns the X location of the given numbered sonar disc.

• int getSonarY (int number)
Returns the Y location of the given numbered sonar disc.

• int getSonarTh (int number)
Returns the heading of the given numbered sonar disc.

• bool getLaserPossessed (void) const

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.108 ArRobotParams Class Reference 435

Returns if the robot has a laser (according to param file).

• const char ∗ getLaserPort (void) const
What port the laser is on.

• bool getLaserPowerControlled (void) const
If the laser power is controlled by the serial port lines.

• bool getLaserFlipped (void) const
If the laser is flipped on the robot.

• int getLaserX (void) const
The X location of the laser.

• int getLaserY (void) const
The Y location of the laser.

• bool hasSettableVelMaxes (void) const
Gets whether the VelMax values are settable or not.

• int getTransVelMax (void) const
Gets the max trans vel from param file (0 uses microcontroller param).

• int getRotVelMax (void) const
Gets the max rot vel from param file (0 uses microcontroller param).

• bool hasSettableAccsDecs (void) const
Whether the accelerations and decelerations are settable or not.

• int getTransAccel (void) const
Gets the trans accel from param file (0 uses microcontroller param).

• int getTransDecel (void) const
Gets the trans decel from param file (0 uses microcontroller param).

• int getRotAccel (void) const
Gets the rot accel from param file (0 uses microcontroller param).

• int getRotDecel (void) const
Gets the rot decel from param file (0 uses microcontroller param).

• bool save (void)
Saves it to the subtype.p in Aria::getDirectory (p. 224)/params.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

436 Aria Class Documentation

4.108.1 Detailed Description

Contains the robot parameters, according to the parameter file.

The documentation for this class was generated from the following files:

• ArRobotParams.h
• ArRobotParams.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.109 ArRunningAverage Class Reference 437

4.109 ArRunningAverage Class Reference

This is a class for computing a running average of a number of elements.

#include <ariaUtil.h>

Public Methods

• ArRunningAverage (size t numToAverage)
Constructor, give it the number of elements you want to average.

• ∼ArRunningAverage ()
Destructor.

• double getAverage (void) const
Gets the average.

• void add (double val)
Adds a number.

• void clear (void)
Clears the average.

• size t getNumToAverage (void) const
Gets the number of elements.

• void setNumToAverage (size t numToAverage)
Sets the number of elements.

4.109.1 Detailed Description

This is a class for computing a running average of a number of elements.

The documentation for this class was generated from the following files:

• ariaUtil.h
• ariaUtil.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

438 Aria Class Documentation

4.110 ArSectors Class Reference

A class for keeping track of if a complete revolution has been attained.

#include <ariaUtil.h>

Public Methods

• ArSectors (int numSectors=8)
Constructor.

• virtual ∼ArSectors ()
Destructor.

• void clear (void)
Clears all quadrants.

• void update (double angle)
Updates the appropriate quadrant for the given angle.

• bool didAll (void) const
Returns true if the all of the quadrants have been gone through.

4.110.1 Detailed Description

A class for keeping track of if a complete revolution has been attained.

This class can be used to keep track of if a complete revolution has been done, it
is used by doing doing a clearQuadrants when you want to stat the revolution.
Then at each point doing an updateQuadrant with the current heading of the
robot. When didAllQuadrants returns true, then all the quadrants have been
done.

The documentation for this class was generated from the following file:

• ariaUtil.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.111 ArSensorReading Class Reference 439

4.111 ArSensorReading Class Reference

A class to hold a sensor reading, should be one instance per sensor.

#include <ArSensorReading.h>

Public Methods

• ArSensorReading (double xPos=0.0, double yPos=0.0, double th-
Pos=0.0)

Constructor, the three args are the physical location of the sonar.

• int getRange (void)
Gets the range of the reading.

• bool isNew (unsigned int counter)
Given the counter from the robot, it returns whether the reading is new.

• double getX (void)
Gets the X location of the sensor reading.

• double getY (void)
Gets the Y location of the sensor reading.

• ArPose getPose (void)
Gets the position of the reading
Returns:

the position of the reading (ie where the sonar pinged back).

• double getLocalX (void)
Gets the X location of the sensor reading in local coords.

• double getLocalY (void)
Gets the Y location of the sensor reading.

• ArPose getLocalPose (void)
Gets the position of the reading
Returns:

the position of the reading (ie where the sonar pinged back).

• ArPose getPoseTaken (void)
Gets the pose the reading was taken at.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

440 Aria Class Documentation

• ArPose getEncoderPoseTaken (void)

Gets the encoder pose the reading was taken at.

• double getSensorX (void)

Gets the X location of the sonar on the robot.

• double getSensorY (void)

Gets the Y location of the sensor on the robot.

• double getSensorTh (void)

Gets the heading of the sensor on the robot.

• ArPose getSensorPosition (void)

Gets the sensors position on the robot.

• double getSensorDX (void)

Gets the cos component of the heading of the sensor reading.

• double getSensorDY (void)

Gets the sin component of the heading of the sensor reading.

• double getXTaken (void)

Gets the X locaiton of the robot when the reading was received.

• double getYTaken (void)

Gets the Y location of the robot when the reading was received.

• double getThTaken (void)

Gets the th (heading) of the robot when the reading was received.

• unsigned int getCounterTaken (void)

Gets the counter from when the reading arrived.

• void newData (int range, ArPose robotPose, ArPose encoderPose, Ar-
Transform trans, unsigned int counter, ArTime timeTaken)

Takes the data and makes the reading reflect it.

• void ArSensorReading::newData (int sx, int sy, ArPose robotPose,
ArPose encoderPose, ArTransform trans, unsigned int counter, Ar-
Time timeTaken)

Takes the data and makes the reading reflect it.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.111 ArSensorReading Class Reference 441

• void resetSensorPosition (double xPos, double yPos, double thPos, bool
forceComputation=false)

Resets the sensors idea of its physical location on the robot.

• void applyTransform (ArTransform trans)

Applies a transform to the reading position, and where it was taken.

4.111.1 Detailed Description

A class to hold a sensor reading, should be one instance per sensor.

This class holds sensor data and a sensor reading... it can happen that it contains
the data for a sonar, but not the reading, in which case the range (from get-
Range) will be -1, and the counter it was taken (from getCounterTaken) will be
0, also it will never be new (from isNew)

4.111.2 Constructor & Destructor Documentation

4.111.2.1 ArSensorReading::ArSensorReading (double xPos = 0.0,
double yPos = 0.0, double thPos = 0.0)

Constructor, the three args are the physical location of the sonar.

Parameters:
xPos the x position of the sensor on the robot (mm)

yPos the y position of the sensor on the robot (mm)

thPos the heading of the sensor on the robot (deg)

4.111.3 Member Function Documentation

4.111.3.1 void ArSensorReading::applyTransform (ArTransform
trans)

Applies a transform to the reading position, and where it was taken.

Parameters:
trans the transform to apply to the reading and where the reading was

taken

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

442 Aria Class Documentation

4.111.3.2 unsigned int ArSensorReading::getCounterTaken (void)
[inline]

Gets the counter from when the reading arrived.

Returns:
the counter from the robot when the sonar reading was taken

See also:
isNew (p. 442)

4.111.3.3 int ArSensorReading::getRange (void) [inline]

Gets the range of the reading.

Returns:
the distance return from the sensor (how far from the robot)

4.111.3.4 ArPose ArSensorReading::getSensorPosition (void)
[inline]

Gets the sensors position on the robot.

Returns:
the position of the sensor on the robot

4.111.3.5 bool ArSensorReading::isNew (unsigned int counter)
[inline]

Given the counter from the robot, it returns whether the reading is new.

Parameters:
counter the counter from the robot at the current time

Returns:
true if the reading was taken on the current loop

See also:
getCounter

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.111 ArSensorReading Class Reference 443

4.111.3.6 void ArSensorReading::newData (int range, ArPose
robotPose, ArPose encoderPose, ArTransform trans,
unsigned int counter, ArTime timeTaken)

Takes the data and makes the reading reflect it.

Parameters:
range the distance from the sensor to the sensor return (mm)

x the x location of the robot when the sensor reading was taken (mm)

y the y location of the robot when the sensor reading was taken (mm)

th the heading of the robot when the sensor reading was taken (deg)

trans the transform from local coords to global coords

counter the counter from the robot when the sensor reading was taken

4.111.3.7 void ArSensorReading::resetSensorPosition (double xPos,
double yPos, double thPos, bool forceComputation =
false)

Resets the sensors idea of its physical location on the robot.

Parameters:
xPos the x position of the sensor on the robot (mm)

yPos the y position of the sensor on the robot (mm)

thPos the heading of the sensor on the robot (deg)

The documentation for this class was generated from the following files:

• ArSensorReading.h
• ArSensorReading.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

444 Aria Class Documentation

4.112 ArSerialConnection Class Reference

For connecting to devices through a serial port.

#include <ArSerialConnection.h>

Inheritance diagram for ArSerialConnection::

ArSerialConnection

ArDeviceConnection

Public Types

• enum Open { OPEN COULD NOT OPEN PORT = 1, OPEN -
COULD NOT SET UP PORT, OPEN INVALID BAUD -
RATE, OPEN COULD NOT SET BAUD, OPEN ALREADY -
OPEN }

Public Methods

• ArSerialConnection ()
Constructor.

• virtual ∼ArSerialConnection ()
Destructor also closes the connection.

• int open (const char ∗port=NULL)
Opens the serial port.

• void setPort (const char ∗port=NULL)
Sets the port this will use.

• const char ∗ getPort (void)
Gets the port this is using.

• virtual bool openSimple (void)
Opens the connection again, using the values from setLocation or.

• virtual int getStatus (void)
Gets the status of the connection, which is one of the enum status.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.112 ArSerialConnection Class Reference 445

• virtual bool close (void)
Closes the connection.

• virtual int read (const char ∗data, unsigned int size, unsigned int ms-
Wait=0)

Reads data from connection.

• virtual int write (const char ∗data, unsigned int size)
Writes data to connection.

• virtual const char ∗ getOpenMessage (int messageNumber)
Gets the string of the message associated with opening the device.

• bool setBaud (int baud)
Sets the baud rate on the connection.

• int getBaud (void)
Gets what the current baud rate is set to.

• bool setHardwareControl (bool hardwareControl)
Sets whether to enable or disable the hardware control lines.

• bool getHardwareControl (void)
Gets whether the hardware control lines are enabled or disabled.

• bool getDCD (void)
Sees how the DCD is set (true = high).

• bool getCTS (void)
Sees how the CTS is set (true = high).

• virtual ArTime getTimeRead (int index)
Gets the time data was read in.

• virtual bool isTimeStamping (void)
sees if timestamping is really going on or not.

4.112.1 Detailed Description

For connecting to devices through a serial port.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

446 Aria Class Documentation

4.112.2 Member Enumeration Documentation

4.112.2.1 enum ArSerialConnection::Open

Enumeration values:
OPEN COULD NOT OPEN PORT Could not open the port.

OPEN COULD NOT SET UP PORT Could not set up the port.

OPEN INVALID BAUD RATE Baud rate is not valid.

OPEN COULD NOT SET BAUD Baud rate valid, but could not set
it.

OPEN ALREADY OPEN Connection was already open.

4.112.3 Member Function Documentation

4.112.3.1 bool ArSerialConnection::close (void) [virtual]

Closes the connection.

Returns:
whether the close succeeded or not

Reimplemented from ArDeviceConnection (p. 139).

4.112.3.2 int ArSerialConnection::getBaud (void)

Gets what the current baud rate is set to.

Returns:
the current baud rate of the connection

4.112.3.3 bool ArSerialConnection::getHardwareControl (void)

Gets whether the hardware control lines are enabled or disabled.

Returns:
true if hardware control of lines is enabled, false otherwise

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.112 ArSerialConnection Class Reference 447

4.112.3.4 const char ∗ ArSerialConnection::getOpenMessage (int
messageNumber) [virtual]

Gets the string of the message associated with opening the device.

Each class inherited from this one has an open method which returns 0 for
success or an integer which can be passed into this function to obtain a string
describing the reason for failure

Parameters:
messageNumber the number returned from the open

Returns:
the error description associated with the messageNumber

Reimplemented from ArDeviceConnection (p. 139).

4.112.3.5 const char ∗ ArSerialConnection::getPort (void)

Gets the port this is using.

Returns:
The seiral port to connect to

4.112.3.6 int ArSerialConnection::getStatus (void) [virtual]

Gets the status of the connection, which is one of the enum status.

Gets the status of the connection, which is one of the enum status. If you want
to get a string to go along with the number, use getStatusMessage

Returns:
the status of the connection

See also:
getStatusMessage (p. 140)

Reimplemented from ArDeviceConnection (p. 139).

4.112.3.7 ArTime ArSerialConnection::getTimeRead (int index)
[virtual]

Gets the time data was read in.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

448 Aria Class Documentation

Parameters:
index looks like this is the index back in the number of bytes last read in

Returns:
the time the last read data was read in

Reimplemented from ArDeviceConnection (p. 140).

4.112.3.8 bool ArSerialConnection::isTimeStamping (void)
[virtual]

sees if timestamping is really going on or not.

Returns:
true if real timestamping is happening, false otherwise

Reimplemented from ArDeviceConnection (p. 140).

4.112.3.9 int ArSerialConnection::open (const char ∗ port = NULL)

Opens the serial port.

Parameters:
port The serial port to connect to, or NULL which defaults to COM1 for

windows and /dev/ttyS0 for linux

Returns:
0 for success, otherwise one of the open enums

See also:
getOpenMessage (p. 447)

4.112.3.10 int ArSerialConnection::read (const char ∗ data,
unsigned int size, unsigned int msWait = 0) [virtual]

Reads data from connection.

Reads data from connection

Parameters:
data pointer to a character array to read the data into

size maximum number of bytes to read

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.112 ArSerialConnection Class Reference 449

msWait read blocks for this many milliseconds (not at all for < 0)

Returns:
number of bytes read, or -1 for failure

See also:
write (p. 450), writePacket (p. 142)

Reimplemented from ArDeviceConnection (p. 141).

4.112.3.11 bool ArSerialConnection::setBaud (int baud)

Sets the baud rate on the connection.

Parameters:
rate the baud rate to set the connection to

Returns:
whether the set succeeded

See also:
getBaud (p. 446)

4.112.3.12 bool ArSerialConnection::setHardwareControl (bool
hardwareControl)

Sets whether to enable or disable the hardware control lines.

Parameters:
hardwareControl true to enable hardware control of lines

Returns:
true if the set succeeded

4.112.3.13 void ArSerialConnection::setPort (const char ∗ port =
NULL)

Sets the port this will use.

Parameters:
port The serial port to connect to, or NULL which defaults to COM1 for

windows and /dev/ttyS0 for linux

See also:
getOpenMessage (p. 447)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

450 Aria Class Documentation

4.112.3.14 int ArSerialConnection::write (const char ∗ data,
unsigned int size) [virtual]

Writes data to connection.

Writes data to connection

Parameters:
data pointer to a character array to write the data from

size number of bytes to write

Returns:
number of bytes read, or -1 for failure

See also:
read (p. 448), writePacket (p. 142)

Reimplemented from ArDeviceConnection (p. 141).

The documentation for this class was generated from the following files:

• ArSerialConnection.h
• ArSerialConnection LIN.cpp
• ArSerialConnection WIN.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.113 ArSick Class Reference 451

4.113 ArSick Class Reference

The sick driver.

#include <ArSick.h>

Inheritance diagram for ArSick::

ArSick

ArRangeDeviceThreaded

ArRangeDevice

Public Types

• enum BaudRate { BAUD9600, BAUD19200, BAUD38400 }
• enum Degrees { DEGREES180, DEGREES100 }
• enum Increment { INCREMENT ONE, INCREMENT HALF }

Public Methods

• ArSick (size t currentBufferSize=361, size t cumulativeBufferSize=0,
const char ∗name=”laser”)

Constructor.

• ∼ArSick ()
Destructor.

• void configure (bool useSim=false, bool powerControl=true,
bool laserFlipped=false, BaudRate baud=BAUD38400, Degrees
deg=DEGREES180, Increment incr=INCREMENT ONE)

Configure the laser before connecting to it.

• void configureShort (bool useSim=false, BaudRate
baud=BAUD38400, Degrees deg=DEGREES180, Increment
incr=INCREMENT ONE)

Shorter configure for the laser.

• void setSensorPosition (double x, double y, double th)
Sets the position of the laser on the robot.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

452 Aria Class Documentation

• void setSensorPosition (ArPose pose)
Sets the position of the laser on the robot.

• ArPose getSensorPosition ()
Gets the position of the laser on the robot.

• double getSensorPositionX ()
Gets the X position of the laser on the robot.

• double getSensorPositionY ()
Gets the Y position of the laser on the robot.

• double getSensorPositionTh ()
Gets the heading of the laser on the robot.

• bool blockingConnect (void)
Connect to the laser while blocking.

• bool asyncConnect (void)
Connect to the laser asyncronously.

• bool disconnect (bool doNotLockRobotForSim=false)
Disconnect from the laser.

• void setDeviceConnection (ArDeviceConnection ∗conn)
Sets the device connection.

• ArDeviceConnection ∗ getDeviceConnection (void)
Gets the device connection.

• bool isConnected (void)
Sees if this is connected to the laser.

• bool tryingToConnect (void)
Sees if this is trying to connect to the laser at the moment.

• unsigned int getMinRange (void)
Gets the minimum range for this device (defaults to 100 mm).

• void setMinRange (unsigned int minRange)
Sets the maximum range for this device (defaults to 100 mm).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.113 ArSick Class Reference 453

• void setFilterNearDist (double dist)
Current readings closer than this are discarded as too close.

• double getFilterNearDist (void)
Current readings closer than this are discarded as too close.

• void setFilterCumulativeMaxDist (double dist)
Cumulative readings must be within this distance of the robot to be saved.

• double getFilterCumulativeMaxDist (void)
Cumulative readings must be within this distance of the robot to be saved.

• void setFilterCumulativeInsertMaxDist (double dist)
Cumulative readings must be taken within this distance to the robot to be
added.

• double getFilterCumulativeInsertMaxDist (void)
Cumulative readings must be taken within this distance to the robot to be
added.

• void setFilterCumulativeNearDist (double dist)
Cumulative readings closer than this are discarded as too close.

• double getFilterCumulativeNearDist (void)
Cumulative readings closer than this are discarded as too close.

• void setFilterCumulativeCleanDist (double dist)
Cumulative readings that are this close to current beams are discarded.

• double getFilterCumulativeCleanDist (void)
Cumulative readings that are this close to current beams are discarded.

• void setFilterCleanCumulativeInterval (int milliSeconds)
Cumulative readings are cleaned every this number of milliseconds.

• int getFilterCleanCumulativeInterval (void)
Cumulative readings are cleaned every this number of milliseconds.

• void setFilterCumulativeMaxAge (int seconds)
Cumulative readings are gotten rid of if they are older than this number of
seconds.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

454 Aria Class Documentation

• int getFilterCumulativeMaxAge (void)
Cumulative readings are gotten rid of if they are older than this number of
seconds.

• bool runOnRobot (void)
Runs the laser off of the robot.

• int getSickPacCount ()
Gets the number of laser packets received in the last second.

• void addConnectCB (ArFunctor ∗functor, ArListPos::Pos
position=ArListPos::LAST)

Adds a connect callback.

• void remConnectCB (ArFunctor ∗functor)
Adds a disconnect callback.

• void addFailedConnectCB (ArFunctor ∗functor, ArListPos::Pos
position=ArListPos::LAST)

Adds a callback for when a connection to the robot is failed.

• void remFailedConnectCB (ArFunctor ∗functor)
Removes a callback for when a connection to the robot is failed.

• void addDisconnectNormallyCB (ArFunctor ∗functor, ArList-
Pos::Pos position=ArListPos::LAST)

Adds a callback for when disconnect is called while connected.

• void remDisconnectNormallyCB (ArFunctor ∗functor)
Removes a callback for when disconnect is called while connected.

• void addDisconnectOnErrorCB (ArFunctor ∗functor, ArList-
Pos::Pos position=ArListPos::LAST)

Adds a callback for when disconnection happens because of an error.

• void remDisconnectOnErrorCB (ArFunctor ∗functor)
Removes a callback for when disconnection happens because of an error.

• void addDataCB (ArFunctor ∗functor, ArListPos::Pos position=Ar-
ListPos::LAST)

Adds a callback that is called whenever a laser packet is processed.

• void remDataCB (ArFunctor ∗functor)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.113 ArSick Class Reference 455

Removes a callback that is called whenever a laser packet is processed.

• void setConnectionTimeoutTime (int mSecs)

Sets the time without a response until connection assumed lost.

• int getConnectionTimeoutTime (void)

Gets the time without a response until connection assumed lost.

• ArTime getLastReadingTime (void)

Gets the time data was last receieved.

• bool isUsingSim (void)

Gets whether the laser is simulated or not.

• bool isControllingPower (void)

Gets whether the computer is controling laser power or not.

• bool isLaserFlipped (void)

Gets whether the laser is flipped over or not.

• Degrees getDegrees (void)

Gets the degrees the laser is scanning.

• Increment getIncrement (void)

Gets the amount each scan increments.

• bool simPacketHandler (ArRobotPacket ∗packet)

The packet handler for when connected to the simulator.

• void sensorInterpCallback (void)

The function called if the laser isn’t running in its own thread and isn’t
simulated.

• bool internalConnectSim (void)

An internal function.

• int internalConnectHandler (void)

An internal function, single loop event to connect to laser.

• virtual void ∗ runThread (void ∗arg)

The internal function used by the ArRangeDeviceThreaded (p. 327).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

456 Aria Class Documentation

• void processPacket (ArSickPacket ∗packet, ArPose pose, ArPose
encoderPose, unsigned int counter)

The internal function which processes the sickPackets.

• void runOnce (bool lockRobot)

The internal function that gets does the work.

• virtual void setRobot (ArRobot ∗robot)

Sets the robot this device is attached to.

• void dropConnection (void)

Internal function, shouldn’t be used, drops the conn because of error.

• void failedConnect (void)

Internal function, shouldn’t be used, denotes the conn failed.

• void madeConnection (void)

Internal function, shouldn’t be used, does the after conn stuff.

• void robotConnectCallback (void)

Internal function, shouldn’t be used, gets params from the robot.

• virtual void applyTransform (ArTransform trans, bool do-
Cumulative=true)

Applies a transform to the buffers.

Protected Types

• enum State { STATE NONE, STATE INIT, STATE WAIT -
FOR POWER ON, STATE CHANGE BAUD, STATE -
CONFIGURE, STATE WAIT FOR CONFIGURE ACK,
STATE INSTALL MODE, STATE WAIT FOR INSTALL -
MODE ACK, STATE SET MODE, STATE WAIT FOR SET -
MODE ACK, STATE START READINGS, STATE WAIT -
FOR START ACK, STATE CONNECTED }

Protected Methods

• void filterReadings ()

Internal function for filtering the raw readings and updating buffers.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.113 ArSick Class Reference 457

• void filterAddAndCleanCumulative (double x, double y, bool clean)

Internal function for managing the cumulative.

• void filterFarAndOldCumulative (void)

Internal function for managing the cumulative.

• void switchState (State state)

Internal function for switching states.

4.113.1 Detailed Description

The sick driver.

4.113.2 Member Enumeration Documentation

4.113.2.1 enum ArSick::BaudRate

Enumeration values:
BAUD9600 9600 Baud.

BAUD19200 19200 Baud.

BAUD38400 38400 Baud.

4.113.2.2 enum ArSick::Degrees

Enumeration values:
DEGREES180 180 Degrees.

DEGREES100 100 Degrees.

4.113.2.3 enum ArSick::Increment

Enumeration values:
INCREMENT ONE One degree increments.

INCREMENT HALF Half a degree increments.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

458 Aria Class Documentation

4.113.2.4 enum ArSick::State [protected]

Enumeration values:
STATE NONE Nothing, haven’t tried to connect or anything.

STATE INIT Initializing the laser.

STATE WAIT FOR POWER ON Waiting for power on.

STATE CHANGE BAUD Change the baud, no confirm here.

STATE CONFIGURE Send the width and increment to the laser.

STATE WAIT FOR CONFIGURE ACK Wait for the configura-
tion Ack.

STATE INSTALL MODE Switch to install mode.

STATE WAIT FOR INSTALL MODE ACK Wait until its
switched to install mode.

STATE SET MODE Set the mode (mm/cm) and extra field bits.

STATE WAIT FOR SET MODE ACK Waiting for set-mode ack.

STATE START READINGS Switch to monitoring mode.

STATE WAIT FOR START ACK Waiting for the switch-mode ack.

STATE CONNECTED We’re connected and getting readings.

4.113.3 Member Function Documentation

4.113.3.1 void ArSick::addConnectCB (ArFunctor ∗ functor,
ArListPos::Pos position = ArListPos::LAST)

Adds a connect callback.

Adds a connect callback, which is an ArFunctor (p. 154), created as an Ar-
FunctorC (p. 181). The entire list of connect callbacks is called when a connec-
tion is made with the laser. If you have some sort of module that adds a callback,
that module must remove the callback when the module is removed.

Parameters:
functorfunctor created from ArFunctorC (p. 181) which refers to the

function to call.

position whether to place the functor first or last

See also:
remConnectCB (p. 464)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.113 ArSick Class Reference 459

4.113.3.2 void ArSick::addDataCB (ArFunctor ∗ functor,
ArListPos::Pos position = ArListPos::LAST)

Adds a callback that is called whenever a laser packet is processed.

Adds a data callback, which is an ArFunctor (p. 154), created as an Ar-
FunctorC (p. 181). Whenever a new reading is processed this callback is called.
You can then get the raw readings with getRawReadings.

Parameters:
functorfunctor created from ArFunctorC (p. 181) which refers to the

function to call.

position whether to place the functor first or last

See also:
remConnectCB (p. 464)

4.113.3.3 void ArSick::addDisconnectNormallyCB (ArFunctor ∗
functor, ArListPos::Pos position = ArListPos::LAST)

Adds a callback for when disconnect is called while connected.

Adds a disconnect normally callback,which is an ArFunctor (p. 154), created
as an ArFunctorC (p. 181). This whole list of disconnect normally callbacks is
called when something calls disconnect if the instance isConnected. If there is
no connection and disconnect is called nothing is done. If you have some sort of
module that adds a callback, that module must remove the callback when the
module is removed.

Parameters:
functor functor created from ArFunctorC (p. 181) which refers to the

function to call.

position whether to place the functor first or last

See also:
remFailedConnectCB (p. 465)

4.113.3.4 void ArSick::addDisconnectOnErrorCB (ArFunctor ∗
functor, ArListPos::Pos position = ArListPos::LAST)

Adds a callback for when disconnection happens because of an error.

Adds a disconnect on error callback, which is an ArFunctor (p. 154), created
as an ArFunctorC (p. 181). This whole list of disconnect on error callbacks is

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

460 Aria Class Documentation

called when ARIA loses connection to a laser because of an error. This can occur
if the physical connection (ie serial cable) between the laser and the computer is
severed/disconnected, or if the laser is turned off. Note that if the link between
the two is lost the ARIA assumes it is temporary until it reaches a timeout
value set with setConnectionTimeoutTime. If you have some sort of module
that adds a callback, that module must remove the callback when the module
removed.

Parameters:
functor functor created from ArFunctorC (p. 181) which refers to the

function to call.

position whether to place the functor first or last

See also:
remFailedConnectCB (p. 465)

4.113.3.5 void ArSick::addFailedConnectCB (ArFunctor ∗ functor,
ArListPos::Pos position = ArListPos::LAST)

Adds a callback for when a connection to the robot is failed.

Adds a failed connect callback,which is an ArFunctor (p. 154), created as an
ArFunctorC (p. 181). This whole list of failed connect callbacks is called when
an attempt is made to connect to the laser, but fails. The usual reason for this
failure is either that there is no laser/sim where the connection was tried to be
made. If you have some sort of module that adds a callback, that module must
remove the callback when the module removed.

Parameters:
functor functor created from ArFunctorC (p. 181) which refers to the

function to call.

position whether to place the functor first or last

See also:
remFailedConnectCB (p. 465)

4.113.3.6 void ArSick::applyTransform (ArTransform trans, bool
doCumulative = true) [virtual]

Applies a transform to the buffers.

Applies a transform to the buffers.. this is mostly useful for translating to/from
local/global coords, but may have other uses. This is different from the class
because it also transforms the raw readings.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.113 ArSick Class Reference 461

Parameters:
trans the transform to apply to the data
doCumulative whether to transform the cumulative buffer or not

Reimplemented from ArRangeDevice (p. 322).

4.113.3.7 bool ArSick::asyncConnect (void)

Connect to the laser asyncronously.

This does not lockDevice the laser, but you should lockDevice the laser before
you try to connect. Also note that if you are connecting to the sim the laser
MUST be unlocked so that this can lock the laser and send the commands to the
sim. To be connected successfully, either the useSim must be set from configure
(and the laser must be connected to a simulator, or this will return true but
connection will fail), the device must have been run or runasync, or the device
must have been runOnLaser.

Returns:
true if a connection will be able to be tried, false otherwise

See also:
configure (p. 461), ArRangeDeviceThreaded::run (p. 327), Ar-
RangeDeviceThreaded::runAsync (p. 327), runOnRobot (p. 466)

4.113.3.8 bool ArSick::blockingConnect (void)

Connect to the laser while blocking.

lockDevice s the laser, and then makes a connection. If it is connecting to the
simulator (set with the useSim flag in configure) then it will lock the laser and
send the commands to the sim. If where you are calling from has the laser
locked, make sure you unlock it before calling this function.

Returns:
true if a connection was made, false otherwise

4.113.3.9 void ArSick::configure (bool useSim = false, bool
powerControl = true, bool laserFlipped = false,
BaudRate baud = BAUD38400, Degrees deg =
DEGREES180, Increment incr = INCREMENT ONE)

Configure the laser before connecting to it.

You must lockDevice the laser or not have the laser being poked at by multiple
threads before you use htis function call

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

462 Aria Class Documentation

4.113.3.10 void ArSick::configureShort (bool useSim = false,
BaudRate baud = BAUD38400, Degrees deg =
DEGREES180, Increment incr = INCREMENT ONE)

Shorter configure for the laser.

You must lockDevice the laser or not have the laser being poked at by multiple
threads before you use htis function call

4.113.3.11 bool ArSick::disconnect (bool doNotLockRobotForSim =
false)

Disconnect from the laser.

Disconnects from the laser. You should lockDevice the laser before calling this
function. Also if you are using the simulator it will lock the robot so it can
send the command to the simulator, so you should make sure the robot is
unlocked.

Parameters:
doNotLockRobotForSim if this is true, this will not lock the robot if

its trying to send a command to the sim... ONLY do this if you are
calling this from within the robots sync loop (ie from a sync task,
sensor interp task, or user task)

Returns:
true if it could disconnect from the laser cleanly

4.113.3.12 void ArSick::filterReadings () [protected]

Internal function for filtering the raw readings and updating buffers.

filter readings here, from raw current buffer to filtered current buffer of the
range device object, and then to the cumulative buffer

current buffer filtering is to eliminate max (null) readings, and compress close
readings

cumulative buffer filtering is to replace readings within the scope of the current
sensor set

4.113.3.13 int ArSick::getConnectionTimeoutTime (void)

Gets the time without a response until connection assumed lost.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.113 ArSick Class Reference 463

Gets the number of seconds to go without response from the laser until it is
assumed tha tthe connection with the laser has been broken and the disconnect
on error events will happen.

4.113.3.14 int ArSick::getFilterCleanCumulativeInterval (void)

Cumulative readings are cleaned every this number of milliseconds.

The cumulative readings are check against the current buffer every this number
of milliseconds... if 0 its cleaned every time there are readings.

4.113.3.15 double ArSick::getFilterCumulativeCleanDist (void)

Cumulative readings that are this close to current beams are discarded.

When the readings are cleaned the current readings are compared against the
cumulative readings... if a beam of a current reading comes within this distance
of a cumulative reading that cumulative reading is removed. If this value is 0
then there is no filtering of this kind.

4.113.3.16 double ArSick::getFilterCumulativeInsertMaxDist
(void)

Cumulative readings must be taken within this distance to the robot to be
added.

When readings are put into the cumulative buffer they must be within this
distance of the robot. If this value is 0 then there is no filtering of this kind.

4.113.3.17 int ArSick::getFilterCumulativeMaxAge (void)

Cumulative readings are gotten rid of if they are older than this number of
seconds.

The cumulative readings must all be less than this number of seconds old or
they are gotten rid of. If 0 this filtering isn’t done

4.113.3.18 double ArSick::getFilterCumulativeMaxDist (void)

Cumulative readings must be within this distance of the robot to be saved.

When readings are put into the cumulative buffer they must be within this
distance of the robot and they cannot get more than this far away from the
robot or they are removed (this is checked every clean interval). If this value is
0 then there is no filtering of this kind.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

464 Aria Class Documentation

4.113.3.19 double ArSick::getFilterCumulativeNearDist (void)

Cumulative readings closer than this are discarded as too close.

When readings are put into the cumulative buffer they must be this far from
all the other cumulative readings or they aren’t put in. If this value is 0 then
there is no filtering of this kind.

4.113.3.20 double ArSick::getFilterNearDist (void)

Current readings closer than this are discarded as too close.

When readings are put into the current buffer they are compared against the
last reading and must be at least this distance away from the last reading. If
this value is 0 then there is no filtering of this kind.

4.113.3.21 int ArSick::internalConnectHandler (void)

An internal function, single loop event to connect to laser.

Returns:
0 if its still trying to connect, 1 if it connected, 2 if it failed

4.113.3.22 bool ArSick::internalConnectSim (void)

An internal function.

Sends the commands to the sim to start up the connection

Returns:
true if the commands were sent, false otherwise

4.113.3.23 void ArSick::remConnectCB (ArFunctor ∗ functor)

Adds a disconnect callback.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addConnectCB (p. 458)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.113 ArSick Class Reference 465

4.113.3.24 void ArSick::remDataCB (ArFunctor ∗ functor)

Removes a callback that is called whenever a laser packet is processed.

Parameters:
functor the functor to remove from the list of data callbacks

See also:
addDataCB (p. 459)

4.113.3.25 void ArSick::remDisconnectNormallyCB (ArFunctor ∗
functor)

Removes a callback for when disconnect is called while connected.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addDisconnectNormallyCB (p. 459)

4.113.3.26 void ArSick::remDisconnectOnErrorCB (ArFunctor ∗
functor)

Removes a callback for when disconnection happens because of an error.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addDisconnectOnErrorCB (p. 459)

4.113.3.27 void ArSick::remFailedConnectCB (ArFunctor ∗
functor)

Removes a callback for when a connection to the robot is failed.

Parameters:
functor the functor to remove from the list of connect callbacks

See also:
addFailedConnectCB (p. 460)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

466 Aria Class Documentation

4.113.3.28 bool ArSick::runOnRobot (void)

Runs the laser off of the robot.

This sets up a sensor interp task on the robot, which is where the robot will be
driven from. Note that the device must have been added to the robot already
so that the device has a pointer to the robot. You should lock the robot and
lockDevice the laser before doing this if other things are running already.

4.113.3.29 void ArSick::setConnectionTimeoutTime (int mSecs)

Sets the time without a response until connection assumed lost.

Sets the number of seconds to go without a response from the laser until it is
assumed that the connection with the laser has been broken and the disconnect
on error events will happen.

Parameters:
seconds if seconds is 0 then the connection timeout feature will be dis-

abled, otherwise disconnect on error will be triggered after this number
of seconds...

4.113.3.30 void ArSick::setFilterCleanCumulativeInterval (int
milliSeconds)

Cumulative readings are cleaned every this number of milliseconds.

The cumulative readings are check against the current buffer every this number
of milliseconds... if 0 its cleaned every time there are readings.

4.113.3.31 void ArSick::setFilterCumulativeCleanDist (double dist)

Cumulative readings that are this close to current beams are discarded.

When the readings are cleaned the current readings are compared against the
cumulative readings... if a beam of a current reading comes within this distance
of a cumulative reading that cumulative reading is removed. If this value is 0
then there is no filtering of this kind.

4.113.3.32 void ArSick::setFilterCumulativeInsertMaxDist (double
dist)

Cumulative readings must be taken within this distance to the robot to be
added.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.113 ArSick Class Reference 467

When readings are put into the cumulative buffer they must be within this
distance of the robot. If this value is 0 then there is no filtering of this kind.

4.113.3.33 void ArSick::setFilterCumulativeMaxAge (int seconds)

Cumulative readings are gotten rid of if they are older than this number of
seconds.

The cumulative readings must all be less than this number of seconds old or
they are gotten rid of. If 0 this filtering isn’t done

4.113.3.34 void ArSick::setFilterCumulativeMaxDist (double dist)

Cumulative readings must be within this distance of the robot to be saved.

When readings are put into the cumulative buffer they must be within this
distance of the robot and they cannot get more than this far away from the
robot or they are removed (this is checked every clean interval). If this value is
0 then there is no filtering of this kind.

4.113.3.35 void ArSick::setFilterCumulativeNearDist (double dist)

Cumulative readings closer than this are discarded as too close.

When readings are put into the cumulative buffer they must be this far from
all the other cumulative readings or they aren’t put in. If this value is 0 then
there is no filtering of this kind.

4.113.3.36 void ArSick::setFilterNearDist (double dist)

Current readings closer than this are discarded as too close.

When readings are put into the current buffer they are compared against the
last reading and must be at least this distance away from the last reading. If
this value is 0 then there is no filtering of this kind.

The documentation for this class was generated from the following files:

• ArSick.h
• ArSick.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

468 Aria Class Documentation

4.114 ArSickLogger Class Reference

This class can be used to create log files for the laser mapper.

#include <ArSickLogger.h>

Public Methods

• ArSickLogger (ArRobot ∗robot, ArSick ∗sick, double distDiff, double
degDiff, const char ∗filename, bool addGoals=false, ArJoyHandler ∗joy-
Handler=NULL)

Constructor.

• virtual ∼ArSickLogger ()
Destructor.

• void addTagToLog (const char ∗str,...)
Adds a string to the log file at the given moment.

• void addTagToLogPlain (const char ∗str)
Same ass addToLog, but no varargs, wrapper for java.

• void setDistDiff (double distDiff)
Sets the distance at which the robot will take a new reading.

• double getDistDiff (void)
Gets the distance at which the robot will take a new reading.

• void setDegDiff (double degDiff)
Sets the degrees to turn at which the robot will take a new reading.

• double getDegDiff (void)
Gets the degrees to turn at which the robot will take a new reading.

• void takeReading (void)
Explicitly tells the robot to take a reading.

• void addGoal (void)
Adds a goal where the robot is at the moment.

• void robotTask (void)
The task which gets attached to the robot.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.114 ArSickLogger Class Reference 469

4.114.1 Detailed Description

This class can be used to create log files for the laser mapper.

This class has a pointer to a robot and a laser... every time the robot has
EITHER moved the distDiff, or turned the degDiff, it will take the current
readings from the laser and log them into the log file given as the filename
to the constructor. Readings can also be taken by calling takeReading which
explicitly tells the logger to take a reading.

The class can also add goals, see the constructor arg addGoals for information
about that... you can also explicitly have it add a goal by calling addGoal.

4.114.2 Constructor & Destructor Documentation

4.114.2.1 ArSickLogger::ArSickLogger (ArRobot ∗ robot, ArSick
∗ sick, double distDiff, double degDiff, const char ∗
filename, bool addGoals = false, ArJoyHandler ∗
joyHandler = NULL)

Constructor.

Make sure you have called ArSick::configure (p. 461) or ArSick::configure-
Short (p. 462) on your laser before you make this class

Parameters:
robot The robot to attach to

sick the laser to log from

distDiff the distance traveled at which to take a new reading

degDiff the degrees turned at which to take a new reading

filename the file name in which to put the log

addGoals whether to add goals automatically or... if true then the sick
logger puts hooks into places it needs this to happen, into any key-
handler thats around (for a keypress of G), it pays attention to the
flag bit of the robot, and it puts in a button press callback for the
joyhandler passed in (if any)

4.114.3 Member Function Documentation

4.114.3.1 void ArSickLogger::addTagToLog (const char ∗ str, ...)

Adds a string to the log file at the given moment.

The robot MUST be locked before you call this function, so that this function
is not adding to a list as the robotTask is using it.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

470 Aria Class Documentation

This function takes the given tag

The documentation for this class was generated from the following files:

• ArSickLogger.h
• ArSickLogger.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.115 ArSickPacket Class Reference 471

4.115 ArSickPacket Class Reference

Represents the packets sent to the sick as well as those received from it.

#include <ArSickPacket.h>

Inheritance diagram for ArSickPacket::

ArSickPacket

ArBasePacket

Public Methods

• ArSickPacket (unsigned char sendingAddress=0)
Constructor.

• virtual ∼ArSickPacket ()
Destructor.

• void setSendingAddress (unsigned char address)
Sets the address to send this packet to (only use for sending).

• unsigned char getSendingAddress (void)
Sets the address to send this packet to (only use for sending).

• unsigned char getReceivedAddress (void)
Gets the address this packet was sent from (only use for receiving).

• bool verifyCRC (void)
returns true if the crc matches what it should be.

• ArTypes::UByte getID (void)
returns the ID of the packet (first byte of data).

• ArTypes::Byte2 calcCRC (void)
returns the crc, probably used only internally.

• virtual void finalizePacket (void)
MakeFinals the packet in preparation for sending, must be done.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

472 Aria Class Documentation

• virtual void resetRead (void)
Restart the reading process.

• ArTime getTimeReceived (void)
Gets the time the packet was received at.

• void setTimeReceived (ArTime timeReceived)
Sets the time the packet was received at.

• virtual void duplicatePacket (ArSickPacket ∗packet)
Duplicates the packet.

4.115.1 Detailed Description

Represents the packets sent to the sick as well as those received from it.

This class reimplements some of the buf operations since the robot is little
endian.

You can just look at the documentation for the ArBasePacket (p. 121) except
for these functions here, setAddress, getAddress, verifyCheckSum, print, getID,
and calcCheckSum.

4.115.2 Member Function Documentation

4.115.2.1 void ArSickPacket::duplicatePacket (ArSickPacket ∗
packet) [virtual]

Duplicates the packet.

Copies the given packets buffer into the buffer of this packet, also sets this length
and readlength to what the given packet has

Parameters:
packet the packet to duplicate

4.115.2.2 unsigned char ArSickPacket::getReceivedAddress (void)

Gets the address this packet was sent from (only use for receiving).

This gets the address that this packet was received from. Note that this is only
valid if this packet was received from a laser, if you want to know where a packet
was addressed to use getSendingAdress instead.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.115 ArSickPacket Class Reference 473

Returns:
the address a packet was received from

4.115.2.3 unsigned char ArSickPacket::getSendingAddress (void)

Sets the address to send this packet to (only use for sending).

This gets the address for use in sending packets, the address is what has been
saved, then when a packet is finalizePacketd for sending, the address is put into
the appropriate spot in the packet.

Returns:
the address of the laser to be addressed

4.115.2.4 void ArSickPacket::resetRead (void) [virtual]

Restart the reading process.

Sets the length read back to the header length so the packet can be reread using
the other methods

Reimplemented from ArBasePacket (p. 126).

4.115.2.5 void ArSickPacket::setSendingAddress (unsigned char
address)

Sets the address to send this packet to (only use for sending).

This sets the address for use in sending packets, the address is saved, then when
a packet is finalizePacketd for sending, the address is put into the appropriate
spot in the packet.

Parameters:
address the address of the laser to be addressed

The documentation for this class was generated from the following files:

• ArSickPacket.h
• ArSickPacket.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

474 Aria Class Documentation

4.116 ArSickPacketReceiver Class Reference

Given a device connection it receives packets from the sick through it.

#include <ArSickPacketReceiver.h>

Public Methods

• ArSickPacketReceiver (unsigned char receivingAddress=0, bool
allocatePackets=false, bool useBase0Address=false)

Constructor without an already assigned device connection.

• ArSickPacketReceiver (ArDeviceConnection ∗deviceConnection,
unsigned char receivingAddress=0, bool allocatePackets=false, bool use-
Base0Address=false)

Constructor with assignment of a device connection.

• virtual ∼ArSickPacketReceiver ()

Destructor.

• ArSickPacket ∗ receivePacket (unsigned int msWait=0)

Receives a packet from the robot if there is one available.

• void setDeviceConnection (ArDeviceConnection ∗device-
Connection)

Sets the device this instance receives packets from.

• ArDeviceConnection ∗ getDeviceConnection (void)

Gets the device this instance receives packets from.

• bool isAllocatingPackets (void)

Gets whether or not the receiver is allocating packets.

4.116.1 Detailed Description

Given a device connection it receives packets from the sick through it.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.116 ArSickPacketReceiver Class Reference 475

4.116.2 Constructor & Destructor Documentation

4.116.2.1 ArSickPacketReceiver::ArSickPacketReceiver (unsigned
char receivingAddress = 0, bool allocatePackets = false,
bool useBase0Address = false)

Constructor without an already assigned device connection.

Parameters:
allocatePackets whether to allocate memory for the packets before re-

turning them (true) or to just return a pointer to an internal packet
(false)... most everything should use false as this will help prevent
many memory leaks or corruptions

4.116.2.2 ArSickPacketReceiver::ArSickPacketReceiver
(ArDeviceConnection ∗ deviceConnection, unsigned char
receivingAddress = 0, bool allocatePackets = false, bool
useBase0Address = false)

Constructor with assignment of a device connection.

Parameters:
deviceConnection the connection which the receiver will use

allocatePackets whether to allocate memory for the packets before re-
turning them (true) or to just return a pointer to an internal packet
(false)... most everything should use false as this will help prevent
many memory leaks or corruptions

4.116.3 Member Function Documentation

4.116.3.1 ArSickPacket ∗ ArSickPacketReceiver::receivePacket
(unsigned int msWait = 0)

Receives a packet from the robot if there is one available.

Parameters:
msWait how long to block for the start of a packet, nonblocking if 0

Returns:
NULL if there are no packets in alloted time, otherwise a pointer to the
packet received, if allocatePackets is true than the place that called this
function owns the packet and should delete the packet when done... if
allocatePackets is false then nothing must store a pointer to this packet,

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

476 Aria Class Documentation

the packet must be used and done with by the time this method is called
again

The documentation for this class was generated from the following files:

• ArSickPacketReceiver.h
• ArSickPacketReceiver.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.117 ArSignalHandler Class Reference 477

4.117 ArSignalHandler Class Reference

Signal handling class.

#include <ArSignalHandler.h>

Inheritance diagram for ArSignalHandler::

ArSignalHandler

ArASyncTask

ArThread

Public Methods

• virtual ∼ArSignalHandler ()

Destructor.

• virtual void ∗ runThread (void ∗arg)

The main run loop.

Static Public Methods

• void createHandlerNonThreaded ()

Setup the signal handling for a non-threaded program.

• void createHandlerThreaded ()

Setup the signal handling for a multi-threaded program.

• void blockCommon ()

Block all the common signals the kill a program.

• void unblockAll ()

Unblock all the signals.

• void block (Signal sig)

Block the given signal.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

478 Aria Class Documentation

• void unblock (Signal sig)

Unblock the given signal.

• void handle (Signal sig)

Handle the given signal.

• void unhandle (Signal sig)

Dont handle the given signal.

• void addHandlerCB (ArFunctor1< int > ∗func, ArListPos::Pos po-
sition)

Add a handler callback.

• void delHandlerCB (ArFunctor1< int > ∗func)

Remove a handler callback.

• ArSignalHandler ∗ getHandler ()

Get a pointer to the single ArSignalHandler instance.

• std::string nameSignal (int sig)

Get the name of the given signal.

• void blockCommonThisThread ()

Block all the common signals for the calling thread only.

• void blockAllThisThread ()

Block all the signals for the calling thread only.

4.117.1 Detailed Description

Signal handling class.

This is a signal handling class. It has both a threaded and non-threaded mode
of operation. The non-threaded mode will work in a threaded application but
it is best to use the threaded mode. The benefit of the threaded mode is that
if the signal incures some processing, but does not shutdown the program (ie.
SIGUSR1 or SIGUSR2), the threaded mode will handle the signal in its own
thread and hopefully that will not hurt the performance of the tight loop robot
control. Exaclty how much performance you get out of this depends on your
machines physical hardware and exactly what the processing the signal handler
does. For instance, a multi-processor machine has a much greater chance of the
signal handler not interfering with the robot control loop.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.117 ArSignalHandler Class Reference 479

See the Aria (p. 221) main class for how to initialize a default setup of the signal
handling.

There are functions to block, unblock, handle and unhandle signals. These
functions all must be called before creating the signalhandler. In either single
or multi-threaded mode. The functions to block and handle signals creates a
set of blocking and handling which is then used by the create functions to tell
the Linux kernel what to do.

In the threaded mode, there is a signal handler thread that is created. That
thread is created in a detached state, which means it can not be joined on.
When the program exits, the signal handler thread will be ignored and that
thread will never exit its run loop. This is perfectly fine behavior. There is no
state that can be messed up in this fashion. It is just easier to exit the program
than to try to wake up that thread and get it to exit itself.

This class is for Linux only. Windows has virtualy no support for signals and
the little support that it does have is not realy usefull. There is an empty
implementation of this class for Windows so that code can compile in both
Linux and Windows. Just do not expect the code that uses this signal handling
to do anything in Windows. This should not be a problem since signals are not
used in Windows.

4.117.2 Member Function Documentation

4.117.2.1 void ArSignalHandler::addHandlerCB (ArFunctor1< int
> ∗ func, ArListPos::Pos position) [static]

Add a handler callback.

Add a handler callback to the list of callbacks. When there is a signal sent to
the process, the list of callbacks are invoked and passed the signal number.

Parameters:
functor functor created from ArFunctorC1<int> which refers to the func-

tion to call.
position whether to place the functor first or last

4.117.2.2 void ArSignalHandler::block (Signal sig) [static]

Block the given signal.

Block the given signal. Call this before calling createHandlerNonThreaded or
createHandlerThreaded.

Parameters:
sig the number of the signal

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

480 Aria Class Documentation

4.117.2.3 void ArSignalHandler::blockCommon () [static]

Block all the common signals the kill a program.

Sets the signal handler to block all the common signals. The ’common’ signals
are SIGHUP, SIGINT, SIGQUIT, SIGTERM, SIGSEGV, and SIGPIPE. Call
this before calling createHandlerNonThreaded or createHandlerThreaded.

4.117.2.4 void ArSignalHandler::blockCommonThisThread ()
[static]

Block all the common signals for the calling thread only.

Block all the common signals for the calling thread. The calling thread will
never recieve the common signals which are SIGHUP, SIGINT, SIGQUIT, and
SIGTERM. This function can be called at any time.

4.117.2.5 void ArSignalHandler::createHandlerNonThreaded ()
[static]

Setup the signal handling for a non-threaded program.

Sets up the signal handling for a non-threaded program. When the program
This uses the system call signal(2). This should not be used if you have a
threaded program.

See also:
createHandlerThreaded (p. 480)

4.117.2.6 void ArSignalHandler::createHandlerThreaded ()
[static]

Setup the signal handling for a multi-threaded program.

Sets up the signal handling for a non-threaded program. This call is only usefull
for Linux. This will create a dedicated thread in which to handle signals. The
thread calls sigwait(3) and waits for a signal to be sent. By default all Ar-
Thread (p. 513) instances block all signals. Thus the signal is sent to the signal
handler thread. This will allow the other threads to continue uninterrupted and
not skew their timing loops.

See also:
createHandlerNonThreaded (p. 480)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.117 ArSignalHandler Class Reference 481

4.117.2.7 void ArSignalHandler::delHandlerCB (ArFunctor1< int
> ∗ func) [static]

Remove a handler callback.

Remove a handler callback from the list of callbacks.

Parameters:
functor functor created from ArFunctorC1<int> which refers to the func-

tion to call.

4.117.2.8 ArSignalHandler ∗ ArSignalHandler::getHandler ()
[static]

Get a pointer to the single ArSignalHandler instance.

Get a pointer to the single instance of the ArSignalHandler. The signal handler
uses the singleton model, which means there can only be one instance of Ar-
SignalHandler. If the single instance of ArSignalHandler has not been created,
getHandler will create it. This is how the handler should be created.

Returns:
returns a pointer to the instance of the signal handler

4.117.2.9 void ArSignalHandler::handle (Signal sig) [static]

Handle the given signal.

Handle the given signal. All the handler callbacks will be called with this sig-
nal when it is recieved. Call this before calling createHandlerNonThreaded or
createHandlerThreaded.

Parameters:
sig the number of the signal

4.117.2.10 void ∗ ArSignalHandler::runThread (void ∗ arg)
[virtual]

The main run loop.

Override this function and put your taskes run loop here. Check the value of
getRunning() (p. 514) or myRunning periodicly in your loop. If the value goes
false, the loop should exit and runThread() (p. 481) should return.

Reimplemented from ArASyncTask (p. 120).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

482 Aria Class Documentation

4.117.2.11 void ArSignalHandler::unblock (Signal sig) [static]

Unblock the given signal.

Unblock the given signal. Call this before calling createHandlerNonThreaded
or createHandlerThreaded.

Parameters:
sig the number of the signal

4.117.2.12 void ArSignalHandler::unblockAll () [static]

Unblock all the signals.

Unblock all the signals. Call this before calling createHandlerNonThreaded or
createHandlerThreaded.

4.117.2.13 void ArSignalHandler::unhandle (Signal sig) [static]

Dont handle the given signal.

Do not handle the given signal. Call this before calling createHandlerNon-
Threaded or createHandlerThreaded.

Parameters:
sig the number of the signal

The documentation for this class was generated from the following files:

• ArSignalHandler.h
• ArSignalHandler LIN.cpp
• ArSignalHandler WIN.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.118 ArSimpleConnector Class Reference 483

4.118 ArSimpleConnector Class Reference

This class simplifies connecting to the robot and/or laser.

#include <ArSimpleConnector.h>

Public Methods

• ArSimpleConnector (int ∗argc, char ∗∗argv)
Constructor that takes args from the main.

• ArSimpleConnector (ArArgumentBuilder ∗builder)
Constructor that takes argument builder.

• ∼ArSimpleConnector (void)
Destructor.

• bool setupRobot (ArRobot ∗robot)
Sets up the robot to be connected.

• bool connectRobot (ArRobot ∗robot)
Sets up the robot then connects it.

• bool setupLaser (ArSick ∗sick)
Sets up the laser to be connected.

• void parseArgs (void)
Function to parse the arguments given.

• void logOptions (void) const
Log the options the simple connector has.

4.118.1 Detailed Description

This class simplifies connecting to the robot and/or laser.

First of all, when you create your ArSimpleConnector you pass it either the argc
and argv from main or you can pass it an ArArgumentBuilder (p. 114), which
you might do if you were making a windows executable that had a WinMain
instead of a main.

Then you need to tell it to parseArgs, which parses those arguments in order to
know where to connect the robot and/or laser.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

484 Aria Class Documentation

Then you can either set up the robot to be connected with setupRobot or just
connect it with connectRobot. You’ll still need to run or runAsync the robot.

You can then set up the laser with setupLaser, but you’ll have to run or run-
Async the laser and connect it yourself.

4.118.2 Member Function Documentation

4.118.2.1 bool ArSimpleConnector::setupLaser (ArSick ∗ sick)

Sets up the laser to be connected.

Description of the logic for connection to the laser. If –remoteHost then the
laser will a tcp connection will be opened to that remoteHost at port 8102 or
–remoteLaserTcpPort if that argument is given, if this connection fails then
the setup fails. If –remoteHost wasn’t provided and the robot connected to a
simulator as described elsewhere then the laser is just configured to be simulated,
if the robot isn’t connected to a simulator it tries to open a serial connection to
ArUtil::COM3 or –laserPort if that argument is given.

4.118.2.2 bool ArSimpleConnector::setupRobot (ArRobot ∗ robot)

Sets up the robot to be connected.

Description of the logic for connection to the robot. If –remoteHost is given then
the connector tries to open a tcp connection to port 8101 by default, or –remote-
RobotTcpPort if that was an option provided and if this tcp connection fails
then the whole connection fails. If no remoteHost was given it first tries to open
a tcp connection to localhost on port 8101 (or –remoteRoboTcpPort) which is
the where the simulator runs, if this tcp connection succeeds then the connector
assumes its connecting to the simulator, if this connection fails then it assumes
a serial connection to the real robot is desired and connects to ArUtil::COM1
or –robotPort if that argument was supplied.

The documentation for this class was generated from the following files:

• ArSimpleConnector.h
• ArSimpleConnector.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.119 ArSocket Class Reference 485

4.119 ArSocket Class Reference

socket communication wrapper.

#include <ArSocket.h>

Public Methods

• ArSocket ()
Constructor.

• ArSocket (const char ∗host, int port, Type type)
Constructor which connects to a server.

• ArSocket (int port, bool doClose, Type type)
Constructor which opens a server port.

• ∼ArSocket ()
Destructor.

• bool copy (int fd, bool doclose)
Copy socket structures.

• void copy (ArSocket ∗s)
Copy socket structures.

• void transfer (ArSocket ∗s)
Transfer ownership of a socket.

• bool connect (const char ∗host, int port, Type type)
Connect as a client to a server.

• bool open (int port, Type type)
Open a server port.

• bool create (Type type)
Simply create a port.

• bool findValidPort (int startPort)
Find a valid unused port and bind the socket to it.

• bool connectTo (const char ∗host, int port)
Connect the socket to the given address.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

486 Aria Class Documentation

• bool connectTo (struct sockaddr in ∗sin)
Connect the socket to the given address.

• bool accept (ArSocket ∗sock)
Accept a new connection.

• bool close ()
Close the socket.

• int write (const void ∗buff, size t len)
Write to the socket.

• int read (void ∗buff, size t len, unsigned int msWait=0)
Read from the socket.

• int sendTo (const void ∗msg, int len)
Send a message on the socket.

• int sendTo (const void ∗msg, int len, struct sockaddr in ∗sin)
Send a message on the socket.

• int recvFrom (void ∗msg, int len, sockaddr in ∗sin)
Receive a message from the socket.

• bool getSockName ()
Get the socket name. Stored in ArSocket::mySin.

• sockaddr in ∗ sockAddrIn ()
Accessor for the sockaddr.

• in addr ∗ inAddr ()
Accessor for the in addr.

• unsigned short int inPort ()
Accessor for the port of the sockaddr.

• bool setLinger (int time)
Set the linger value.

• bool setBroadcast ()
Set broadcast value.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.119 ArSocket Class Reference 487

• bool setReuseAddress ()
Set the reuse address value.

• bool setNonBlock ()
Set socket to nonblocking.

• void setDoClose (bool yesno)
Change the doClose value.

• int getFD () const
Get the file descriptor.

• Type getType () const
Get the protocol type.

• const std::string & getErrorStr () const
Get the last error string.

• Error getError () const
Get the last error.

• int writeString (const char ∗str,...)
Writes a string to the socket (adding end of line characters).

• int writeStringPlain (const char ∗str)
Same as writeString, but no varargs, wrapper for java.

• char ∗ readString (void)
Reads a string from the socket.

• void setEcho (bool echo)
Sets echoing on the readString calls this socket does.

• bool getEcho (void)
Gets if we are echoing on the readString calls this socket does.

Static Public Methods

• bool init ()
Initialize the network layer.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

488 Aria Class Documentation

• void shutdown ()

Shutdown the network layer.

• bool hostAddr (const char ∗host, struct in addr &addr)

Convert a host string to an address structure.

• bool addrHost (struct in addr &addr, char ∗host)

Convert an address structure to a host string.

• std::string getHostName ()

Get the localhost address.

• void inToA (struct in addr ∗addr, char ∗buff)

Convert addr into string numerical address.

• const size t sockAddrLen ()

Size of the sockaddr.

• const size t maxHostNameLen ()

Max host name length.

• unsigned int hostToNetOrder (int i)

Host byte order to network byte order.

• unsigned int netToHostOrder (int i)

Network byte order to host byte order.

Static Public Attributes

• bool ourInitialized = true

We’re always initialized in Linux.

Protected Methods

• void doStringEcho (void)

internal function that echos strings from read string.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.119 ArSocket Class Reference 489

4.119.1 Detailed Description

socket communication wrapper.

ArSocket is a layer which allows people to use the sockets networking interface in
an operating system independent manner. All of the standard commonly used
socket functions are implemented. This class also contains the file descriptor
which identifies the socket to the operating system.

In Windows, the networking subsystem needs to be initialized and shut-
down individyaly by each program. So when a program starts they will
need to call the static function ArSocket::init() (p. 490) and call Ar-
Socket::shutdown() (p. 491) when it exits. For programs that use Aria::init()
(p. 224) and Aria::uninit() (p. 225) calling the ArSocket::init() (p. 490) and
ArSocket::shutdown() (p. 491) is unnecessary. The Aria (p. 221) initializa-
tion functions take care of this. These functions do nothing in Linux.

4.119.2 Constructor & Destructor Documentation

4.119.2.1 ArSocket::ArSocket (const char ∗ host, int port, Type
type)

Constructor which connects to a server.

Constructs the socket and connects it to the given host.

Parameters:
host hostname of the server to connect to

port port number of the server to connect to

type protocol type to use

4.119.2.2 ArSocket::ArSocket (int port, bool doClose, Type type)

Constructor which opens a server port.

Constructs the socket and opens it as a server port.

Parameters:
port port number to bind the socket to

doClose automaticaly close the port if the socket is destructed

type protocol type to use

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

490 Aria Class Documentation

4.119.3 Member Function Documentation

4.119.3.1 bool ArSocket::copy (int fd, bool doclose)

Copy socket structures.

Copy socket structures. Copy from one Socket to another will still have the first
socket close the file descripter when it is destructed.

4.119.3.2 bool ArSocket::init (void) [static]

Initialize the network layer.

In Windows, the networking subsystem needs to be initialized and shut-
down individyaly by each program. So when a program starts they will
need to call the static function ArSocket::init() (p. 490) and call Ar-
Socket::shutdown() (p. 491) when it exits. For programs that use Aria::init()
(p. 224) and Aria::uninit() (p. 225) calling the ArSocket::init() (p. 490) and
ArSocket::shutdown() (p. 491) is unnecessary. The Aria (p. 221) initializa-
tion functions take care of this. These functions do nothing in Linux.

4.119.3.3 int ArSocket::read (void ∗ buff, size t len, unsigned int
msWait = 0) [inline]

Read from the socket.

Parameters:
buff buffer to read into
len how many bytes to read
msWait if 0, don’t block, if > 0 wait this long for data

Returns:
number of bytes read

4.119.3.4 char ∗ ArSocket::readString (void)

Reads a string from the socket.

This function can only read strings less than 512 characters long as it reads the
characters into its own internal buffer (to compensate for some of the things the
DOS telnet does).

Returns:
if there was good data, the string... if there was no data a string with a
’\0’ first character and if the socket was bad it returns NULL

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.119 ArSocket Class Reference 491

4.119.3.5 void ArSocket::shutdown () [static]

Shutdown the network layer.

In Windows, the networking subsystem needs to be initialized and shut-
down individyaly by each program. So when a program starts they will
need to call the static function ArSocket::init() (p. 490) and call Ar-
Socket::shutdown() (p. 491) when it exits. For programs that use Aria::init()
(p. 224) and Aria::uninit() (p. 225) calling the ArSocket::init() (p. 490) and
ArSocket::shutdown() (p. 491) is unnecessary. The Aria (p. 221) initializa-
tion functions take care of this. These functions do nothing in Linux.

4.119.3.6 void ArSocket::transfer (ArSocket ∗ s) [inline]

Transfer ownership of a socket.

transfer() (p. 491) will transfer ownership to this socket. The input socket will
no longer close the file descriptor when it is destructed.

4.119.3.7 int ArSocket::write (const void ∗ buff, size t len)
[inline]

Write to the socket.

Parameters:
buff buffer to write from

len how many bytes to write

Returns:
number of bytes written

The documentation for this class was generated from the following files:

• ArSocket.h
• ArSocket.cpp
• ArSocket LIN.cpp
• ArSocket WIN.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

492 Aria Class Documentation

4.120 ArSonarDevice Class Reference

A class for keeping track of sonar.

#include <ArSonarDevice.h>

Inheritance diagram for ArSonarDevice::

ArSonarDevice

ArRangeDevice

Public Methods

• ArSonarDevice (size t currentBufferSize=24, size t cumulativeBuffer-
Size=64, const char ∗name=”sonar”)

Constructor.

• ∼ArSonarDevice ()
Destructor.

• void processReadings (void)
Grabs the new readigns from the robot and adds them to the buffers.

• virtual void setRobot (ArRobot ∗robot)
Sets the robot pointer, also attaches its process function to the sensorInterp
of the robot.

• virtual void addReading (double x, double y)
Adds sonar readings to the current and cumulative buffers Overrides the
ArRangeDevice (p. 319) default action.

• void setCumulativeMaxRange (double r)
Maximum range for a reading to be added to the cumulative buffer (mm).

4.120.1 Detailed Description

A class for keeping track of sonar.

This class is for keeping a sonar history, and using that for obstacle avoidance
and displays and what not

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.120 ArSonarDevice Class Reference 493

4.120.2 Member Function Documentation

4.120.2.1 void ArSonarDevice::addReading (double x, double y)
[virtual]

Adds sonar readings to the current and cumulative buffers Overrides the Ar-
RangeDevice (p. 319) default action.

Adds a sonar reading with the global coordinates x,y. Makes sure the reading is
within the proper distance to the robot, for both current and cumulative buffers.
Filters buffer points Note: please lock the device using lockDevice() (p. 325)
/ unlockDevice() (p. 326) if calling this from outside process().

Parameters:
x the global x coordinate of the reading

y the global y coordinate of the reading

Reimplemented from ArRangeDevice (p. 319).

The documentation for this class was generated from the following files:

• ArSonarDevice.h
• ArSonarDevice.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

494 Aria Class Documentation

4.121 ArSonyPacket Class Reference

A class for for making commands to send to the sony.

#include <ArSonyPTZ.h>

Inheritance diagram for ArSonyPacket::

ArSonyPacket

ArBasePacket

Public Methods

• ArSonyPacket (ArTypes::UByte2 bufferSize=15)
Constructor.

• virtual void uByteToBuf (ArTypes::UByte val)
Puts ArTypes::UByte (p. 522) into packets buffer.

• virtual void byte2ToBuf (ArTypes::Byte2 val)
Puts ArTypes::Byte2 (p. 522) into packets buffer.

• void byte2ToBufAtPos (ArTypes::Byte2 val, ArTypes::UByte2
pose)

This is a new function, read the details before you try to use it.

4.121.1 Detailed Description

A class for for making commands to send to the sony.

There are only two functioning ways to put things into this packet, you MUST
use thse, if you use anything else your commands won’t work. You must use
uByteToBuf and byte2ToBuf.

4.121.2 Member Function Documentation

4.121.2.1 void ArSonyPacket::byte2ToBufAtPos (ArTypes::Byte2
val, ArTypes::UByte2 pose)

This is a new function, read the details before you try to use it.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.121 ArSonyPacket Class Reference 495

This function is my concession to not rebuilding a packet from scratch for every
command, basicaly this is to not lose all speed over just using a character
array. This is used by the default sony commands, unless you have a deep
understanding of how the packets are working and what the packet structure
looks like you should not play with this function, it also isn’t worth it unless
you’ll be sending commands frequently.

Parameters:
val the Byte2 to put into the packet

pose the position in the packets array to put the value

The documentation for this class was generated from the following files:

• ArSonyPTZ.h
• ArSonyPTZ.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

496 Aria Class Documentation

4.122 ArSonyPTZ Class Reference

A class to use the sony pan tilt zoom unit.

#include <ArSonyPTZ.h>

Inheritance diagram for ArSonyPTZ::

ArSonyPTZ

ArPTZ

Public Types

• enum { MAX PAN = 95, MAX TILT = 25, MIN ZOOM = 0,
MAX ZOOM = 1023 }

Public Methods

• virtual bool init (void)
Initializes the camera.

• virtual bool pan (int degrees)
Pans to the given degrees.

• virtual bool panRel (int degrees)
Pans relative to current position by given degrees.

• virtual bool tilt (int degrees)
Tilts to the given degrees.

• virtual bool tiltRel (int degrees)
Tilts relative to the current position by given degrees.

• virtual bool panTilt (int degreesPan, int degreesTilt)
Pans and tilts to the given degrees.

• virtual bool panTiltRel (int degreesPan, int degreesTilt)
Pans and tilts relatives to the current position by the given degrees.

• virtual bool canZoom (void) const

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.122 ArSonyPTZ Class Reference 497

Returns true if camera can zoom (or rather, if it is controlled by this).

• virtual bool zoom (int zoomValue)

Zooms to the given value.

• virtual bool zoomRel (int zoomValue)

Zooms relative to the current value, by the given value.

• virtual int getPan (void) const

The angle the camera was last told to pan to.

• virtual int getTilt (void) const

The angle the camera was last told to tilt to.

• virtual int getZoom (void) const

The value the camera was last told to zoom to.

• virtual int getMaxPosPan (void) const

Gets the highest positive degree the camera can pan to.

• virtual int getMaxNegPan (void) const

Gets the lowest negative degree the camera can pan to.

• virtual int getMaxPosTilt (void) const

Gets the highest positive degree the camera can tilt to.

• virtual int getMaxNegTilt (void) const

Gets the lowest negative degree the camera can tilt to.

• virtual int getMaxZoom (void) const

Gets the maximum value for the zoom on this camera.

• virtual int getMinZoom (void) const

Gets the lowest value for the zoom on this camera.

4.122.1 Detailed Description

A class to use the sony pan tilt zoom unit.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

498 Aria Class Documentation

4.122.2 Member Enumeration Documentation

4.122.2.1 anonymous enum

Enumeration values:
MAX PAN maximum degrees the unit can pan (either direction).

MAX TILT maximum degrees the unit can tilt (either direction).

MIN ZOOM minimum value for zoom.

MAX ZOOM maximum value for zoom.

The documentation for this class was generated from the following files:

• ArSonyPTZ.h
• ArSonyPTZ.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.123 ArSyncTask Class Reference 499

4.123 ArSyncTask Class Reference

Class used internally to manage the functions that are called every cycle.

#include <ArSyncTask.h>

Public Methods

• ArSyncTask (const char ∗name, ArFunctor ∗functor=NULL, ArTask-
State::State ∗state=NULL, ArSyncTask ∗parent=NULL)

Constructor, shouldn’t ever do a new on anything besides the root node.

• virtual ∼ArSyncTask ()
Destructor.

• void run (void)
Runs the node, which runs all children of this node as well.

• void log (int depth=0)
Prints the node, which prints all the children of this node as well.

• ArTaskState::State getState (void)
Gets the state of the task.

• void setState (ArTaskState::State state)
Sets the state of the task.

• ArSyncTask ∗ findNonRecursive (const char ∗name)
Finds the task in the instances list of children, by name.

• ArSyncTask ∗ findNonRecursive (ArFunctor ∗functor)
Finds the task in the instances list of children, by functor.

• ArSyncTask ∗ find (const char ∗name)
Finds the task recursively down the tree by name.

• ArSyncTask ∗ find (ArFunctor ∗functor)
Finds the task recursively down the tree by functor.

• void addNewBranch (const char ∗nameOfNew, int position, ArTask-
State::State ∗state=NULL)

Adds a new branch to this instance.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

500 Aria Class Documentation

• void addNewLeaf (const char ∗nameOfNew, int position, ArFunctor
∗functor, ArTaskState::State ∗state=NULL)

Adds a new leaf to this instance.

• std::string getName (void)
Gets the name of this task.

• ArFunctor ∗ getFunctor (void)
Gets the functor this instance runs, if there is one.

• void setWarningTimeCB (ArRetFunctor< unsigned int >
∗functor)

Sets the functor called to get the cycle warning time (should only be used
from the robot).

• ArRetFunctor< unsigned int > ∗ getWarningTimeCB (void)
Gets the functor called to get the cycle warning time (should only be used
from the robot).

• void setNoTimeWarningCB (ArRetFunctor< bool > ∗functor)
Sets the functor called to check if there should be a time warning this cycle
(should only be used from the robot).

• ArRetFunctor< bool > ∗ getNoTimeWarningCB (void)
Gets the functor called to check if there should be a time warning this cycle
(should only be used from the robot).

4.123.1 Detailed Description

Class used internally to manage the functions that are called every cycle.

This is used internally, no user should ever have to create one, but serious
developers may want to use the members. Most users will be able to use the
user tasks defined in the ArRobot (p. 362) class. This class should only be
used by serious developers.

The way it works is that each instance is a node in a tree. The only node that
should ever be created with a new is the top one. The run and print functions
both call the run/print on themselves, then on all of their children, going from
lowest numbered position to highest numbered, lower going first. There are no
hard limits to the position, it can be any integer. ARIA uses the convention
of 0 to 100, when you add things of your own you should leave room to add in
between. Also you can add things with the same position, the only effect this
has is that the first addition will show up first in the run or print.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.123 ArSyncTask Class Reference 501

After the top one is created, every other task should be created with either add-
NewBranch or addNewLeaf. Each node can either be a branch node or a list
node. The list (multimap actually) of branches/nodes is ordered by the position
passed in to the add function. addNewBranch adds a new branch node to the
instance it is called on, with the given name and position. addNewLeaf adds a
new leaf node to the instance it is called on, with the given name and position,
and also with the ArFunctor (p. 154) given, this functor will be called when
the leaf is run. Either add creates the new instance and puts it in the list of
branches/nodes in the approriate spot.

The tree takes care of all of its own memory management and list management,
the add functions put into the list and creates the memory, conversely if you
delete an ArSyncTask (which is the correct way to get rid of one) it will remove
itself from its parents list.

If you want to add something to the tree the proper way to do it is to get
the pointer to the root of the tree (ie with ArRobot::getSyncProcRoot) and
then to use find on the root to find the branch you want to travel down, then
continue this until you find the node you want to add to. Once there just call
addNewBranch or addNewLeaf and you’re done.

There is now a pointer to an integer that is the state of the task, if this pointer
is given whenever something changes the state of the task it will modify the
value pointed to. If the pointer is NULL then the syncTask will use an integer
of its own to keep track of the state of the process.

4.123.2 Constructor & Destructor Documentation

4.123.2.1 ArSyncTask::ArSyncTask (const char ∗ name, ArFunctor
∗ functor = NULL, ArTaskState::State ∗ state = NULL,
ArSyncTask ∗ parent = NULL)

Constructor, shouldn’t ever do a new on anything besides the root node.

New should never be called to create an ArSyncTask except to create the root
node. Read the detailed documentation of the class for details.

4.123.2.2 ArSyncTask::∼ArSyncTask () [virtual]

Destructor.

If you delete the task it deletes everything in its list, so to delete the whole tree
just delete the top one... also note that if you delete a node, it will remove itself
from its parents list.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

502 Aria Class Documentation

4.123.3 Member Function Documentation

4.123.3.1 void ArSyncTask::addNewBranch (const char ∗
nameOfNew, int position, ArTaskState::State ∗ state =
NULL)

Adds a new branch to this instance.

Creates a new task with the given name and puts the task into its own iternal
list at the given position.

Parameters:
nameOfNew Name to give to the new task.
position place in list to put the branch, things are run/printed in the order

of highest number to lowest number, no limit on numbers (other than
that it is an int). ARIA uses 0 to 100 just as a convention.

4.123.3.2 void ArSyncTask::addNewLeaf (const char ∗ nameOfNew,
int position, ArFunctor ∗ functor, ArTaskState::State ∗
state = NULL)

Adds a new leaf to this instance.

Creates a new task with the given name and puts the task into its own iternal
list at the given position. Sets the nodes functor so that it will call the functor
when run is called.

Parameters:
nameOfNew Name to give to the new task.
position place in list to put the branch, things are run/printed in the order

of highest number to lowest number, no limit on numbers (other than
that it is an int). ARIA uses 0 to 100 just as a convention.

functor ArFunctor (p. 154) which contains the functor to invoke when
run is called.

4.123.3.3 ArSyncTask ∗ ArSyncTask::find (ArFunctor ∗ functor)

Finds the task recursively down the tree by functor.

Finds a node below (or at) this level in the tree with the given name

Parameters:
name The name of the child we are interested in finding

Returns:
The task, if found. If not found, NULL.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.123 ArSyncTask Class Reference 503

4.123.3.4 ArSyncTask ∗ ArSyncTask::find (const char ∗ name)

Finds the task recursively down the tree by name.

Finds a node below (or at) this level in the tree with the given name

Parameters:
name The name of the child we are interested in finding

Returns:
The task, if found. If not found, NULL.

4.123.3.5 ArSyncTask ∗ ArSyncTask::findNonRecursive (ArFunctor
∗ functor)

Finds the task in the instances list of children, by functor.

Finds a child of this node with the given functor

Parameters:
functor the functor we are interested in finding

Returns:
The task, if found. If not found, NULL.

4.123.3.6 ArSyncTask ∗ ArSyncTask::findNonRecursive (const char
∗ name)

Finds the task in the instances list of children, by name.

Finds a child of this node with the given name

Parameters:
name The name of the child we are interested in finding

Returns:
The task, if found. If not found, NULL.

4.123.3.7 ArRetFunctor< bool > ∗ ArSyncTask::getNoTime-
WarningCB (void)

Gets the functor called to check if there should be a time warning this cycle
(should only be used from the robot).

This sets a functor which will be called to see if we should warn this time through
or not.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

504 Aria Class Documentation

4.123.3.8 ArRetFunctor< unsigned int > ∗
ArSyncTask::getWarningTimeCB (void)

Gets the functor called to get the cycle warning time (should only be used from
the robot).

This gets a functor which will be called to find the time on the task such that if
it takes longer than this number of ms to run a warning message will be issued,
sets this on the children too.

4.123.3.9 void ArSyncTask::log (int depth = 0)

Prints the node, which prints all the children of this node as well.

Prints the node... the defaulted depth parameter controls how far over to print
the data (how many tabs)... it recurses down all its children.

4.123.3.10 void ArSyncTask::run (void)

Runs the node, which runs all children of this node as well.

If this node is a leaf it calls the functor for the node, if it is a branch it goes
through all of the children in the order of highest position to lowest position
and calls run on them.

4.123.3.11 void ArSyncTask::setNoTimeWarningCB
(ArRetFunctor< bool > ∗ functor)

Sets the functor called to check if there should be a time warning this cycle
(should only be used from the robot).

This sets a functor which will be called to see if we should warn this time through
or not.

4.123.3.12 void ArSyncTask::setWarningTimeCB (ArRetFunctor<
unsigned int > ∗ functor)

Sets the functor called to get the cycle warning time (should only be used from
the robot).

This sets a functor which will be called to find the time on the task such that if
it takes longer than this number of ms to run a warning message will be issued,
sets this on the children too.

The documentation for this class was generated from the following files:

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.123 ArSyncTask Class Reference 505

• ArSyncTask.h
• ArSyncTask.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

506 Aria Class Documentation

4.124 ArTaskState Class Reference

Class with the different states a task can be in.

#include <ArTaskState.h>

Public Types

• enum State { INIT = 0, RESUME, ACTIVE, SUSPEND, SUC-
CESS, FAILURE, USER START = 20 }

4.124.1 Detailed Description

Class with the different states a task can be in.

These are the defined states, if the state is anything other than is defined here
that is annotated (not running) the process will be run. No one should have
any of their own states less than the USER START state. People’s own states
should start at USER START or at USER START plus a constant (so they can
have different sets of states).

4.124.2 Member Enumeration Documentation

4.124.2.1 enum ArTaskState::State

Enumeration values:
INIT Initialized (running).

RESUME Resumed after being suspended (running).

ACTIVE Active (running).

SUSPEND Suspended (not running).

SUCCESS Succeeded and done (not running).

FAILURE Failed and done (not running).

USER START This is where the user states should start (they will all
be run).

The documentation for this class was generated from the following file:

• ArTaskState.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.125 ArTcpConnection Class Reference 507

4.125 ArTcpConnection Class Reference

For connectiong to a device through a socket.

#include <ArTcpConnection.h>

Inheritance diagram for ArTcpConnection::

ArTcpConnection

ArDeviceConnection

Public Types

• enum Open { OPEN NET FAIL = 1, OPEN BAD HOST,
OPEN NO ROUTE, OPEN CON REFUSED }

Public Methods

• ArTcpConnection ()
Constructor.

• virtual ∼ArTcpConnection ()
Destructor also closes connection.

• int open (const char ∗host=NULL, int port=8101)
Opens a connection to the given host and port.

• virtual bool openSimple (void)
Opens the connection again, using the values from setLocation or.

• virtual int getStatus (void)
Gets the status of the connection, which is one of the enum status.

• virtual bool close (void)
Closes the connection.

• virtual int read (const char ∗data, unsigned int size, unsigned int ms-
Wait=0)

Reads data from connection.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

508 Aria Class Documentation

• virtual int write (const char ∗data, unsigned int size)
Writes data to connection.

• virtual const char ∗ getOpenMessage (int messageNumber)
Gets the string of the message associated with opening the device.

• virtual ArTime getTimeRead (int index)
Gets the time data was read in.

• virtual bool isTimeStamping (void)
sees if timestamping is really going on or not.

• std::string getHost (void)
Gets the name of the host connected to.

• int getPort (void)
Gets the number of the port connected to.

• int internalOpen (void)
Internal function used by open and openSimple.

• void setSocket (ArSocket ∗socket)
Sets the tcp connection to use this socket instead of its own.

• ArSocket ∗ getSocket (void)
Gets the socket this tcp connection is using.

• void setStatus (int status)
Sets the status of the device, ONLY use this if you’re playing with setSocket
and know what you’re doing.

4.125.1 Detailed Description

For connectiong to a device through a socket.

4.125.2 Member Enumeration Documentation

4.125.2.1 enum ArTcpConnection::Open

Enumeration values:
OPEN NET FAIL Some critical part of the network isn’t working.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.125 ArTcpConnection Class Reference 509

OPEN BAD HOST Could not find the host.

OPEN NO ROUTE Know where the host is, but can’t get to it.

OPEN CON REFUSED Got to the host but it didn’t allow a connec-
tion.

4.125.3 Member Function Documentation

4.125.3.1 bool ArTcpConnection::close (void) [virtual]

Closes the connection.

Returns:
whether the close succeeded or not

Reimplemented from ArDeviceConnection (p. 139).

4.125.3.2 std::string ArTcpConnection::getHost (void)

Gets the name of the host connected to.

Returns:
the name of the host connected to

See also:
getPort (p. 510)

4.125.3.3 const char ∗ ArTcpConnection::getOpenMessage (int
messageNumber) [virtual]

Gets the string of the message associated with opening the device.

Each class inherited from this one has an open method which returns 0 for
success or an integer which can be passed into this function to obtain a string
describing the reason for failure

Parameters:
messageNumber the number returned from the open

Returns:
the error description associated with the messageNumber

Reimplemented from ArDeviceConnection (p. 139).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

510 Aria Class Documentation

4.125.3.4 int ArTcpConnection::getPort (void)

Gets the number of the port connected to.

Returns:
the number of the port connected to

See also:
getHost (p. 509)

4.125.3.5 int ArTcpConnection::getStatus (void) [virtual]

Gets the status of the connection, which is one of the enum status.

Gets the status of the connection, which is one of the enum status. If you want
to get a string to go along with the number, use getStatusMessage

Returns:
the status of the connection

See also:
getStatusMessage (p. 140)

Reimplemented from ArDeviceConnection (p. 139).

4.125.3.6 ArTime ArTcpConnection::getTimeRead (int index)
[virtual]

Gets the time data was read in.

Parameters:
index looks like this is the index back in the number of bytes last read in

Returns:
the time the last read data was read in

Reimplemented from ArDeviceConnection (p. 140).

4.125.3.7 bool ArTcpConnection::isTimeStamping (void)
[virtual]

sees if timestamping is really going on or not.

Returns:
true if real timestamping is happening, false otherwise

Reimplemented from ArDeviceConnection (p. 140).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.125 ArTcpConnection Class Reference 511

4.125.3.8 int ArTcpConnection::open (const char ∗ host = NULL,
int port = 8101)

Opens a connection to the given host and port.

Parameters:
host the host to connect to, if NULL (default) then localhost

port the port to connect to

Returns:
0 for success, otherwise one of the open enums

See also:
getOpenMessage (p. 509)

4.125.3.9 int ArTcpConnection::read (const char ∗ data, unsigned
int size, unsigned int msWait = 0) [virtual]

Reads data from connection.

Reads data from connection

Parameters:
data pointer to a character array to read the data into

size maximum number of bytes to read

msWait read blocks for this many milliseconds (not at all for < 0)

Returns:
number of bytes read, or -1 for failure

See also:
write (p. 512), writePacket (p. 142)

Reimplemented from ArDeviceConnection (p. 141).

4.125.3.10 void ArTcpConnection::setSocket (ArSocket ∗ socket)

Sets the tcp connection to use this socket instead of its own.

This will make the connection use this socket, its useful for doing funkier things
with sockets but still being able to use a device connection.

Parameters:
sock the socket to use

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

512 Aria Class Documentation

4.125.3.11 int ArTcpConnection::write (const char ∗ data, unsigned
int size) [virtual]

Writes data to connection.

Writes data to connection

Parameters:
data pointer to a character array to write the data from

size number of bytes to write

Returns:
number of bytes read, or -1 for failure

See also:
read (p. 511), writePacket (p. 142)

Reimplemented from ArDeviceConnection (p. 141).

The documentation for this class was generated from the following files:

• ArTcpConnection.h
• ArTcpConnection.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.126 ArThread Class Reference 513

4.126 ArThread Class Reference

POSIX/WIN32 thread wrapper class.

#include <ArThread.h>

Inheritance diagram for ArThread::

ArThread

ArASyncTask

ArFunctorASyncTask ArRecurrentTask ArSignalHandler ArSyncLoop

Public Types

• enum Status { STATUS FAILED = 1, STATUS NORESOURCE,
STATUS NO SUCH THREAD, STATUS INVALID, STATUS -
JOIN SELF, STATUS ALREADY DETATCHED }

Public Methods

• ArThread (bool blockAllSignals=true)
Constructor.

• ArThread (ThreadType thread, bool joinable, bool blockAll-
Signals=true)

Constructor - starts the thread.

• ArThread (ArFunctor ∗func, bool joinable=true, bool blockAll-
Signals=true)

Constructor - starts the thread.

• virtual ∼ArThread ()
Destructor.

• virtual int create (ArFunctor ∗func, bool joinable=true, bool lower-
Priority=true)

Create and start the thread.

• virtual void stopRunning (void)

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

514 Aria Class Documentation

Stop the thread.

• virtual int join (void ∗∗ret=NULL)

Join on the thread.

• virtual int detach (void)

Detatch the thread so it cant be joined.

• virtual void cancel (void)

Cancel the thread.

• virtual bool getRunning (void) const

Get the running status of the thread.

• virtual bool getRunningWithLock (void)

Get the running status of the thread, locking around the variable.

• virtual bool getJoinable (void) const

Get the joinable status of the thread.

• virtual const ThreadType ∗ getThread (void) const

Get the underlying thread type.

• virtual ArFunctor ∗ getFunc (void) const

Get the functor that the thread runs.

• virtual void setRunning (bool running)

Set the running value on the thread.

• int lock (void)

Lock the thread instance.

• int tryLock (void)

Try to lock the thread instance without blocking.

• int unlock (void)

Unlock the thread instance.

• bool getBlockAllSignals (void)

Do we block all process signals at startup?

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.126 ArThread Class Reference 515

Static Public Methods

• void init (void)

Initialize the internal book keeping structures.

• ArThread ∗ self (void)

Returns the instance of your own thread.

• void stopAll ()

Stop all threads.

• void cancelAll (void)

Cancel all threads.

• void joinAll (void)

Join on all threads.

• void yieldProcessor (void)

Yield the processor to another thread.

Protected Attributes

• bool myRunning

State variable to denote when the thread should continue or exit.

4.126.1 Detailed Description

POSIX/WIN32 thread wrapper class.

create() (p. 513) will create the thread. That thread will run the given Functor.

A thread can either be in a detached state or a joinable state. If the thread is
in a detached state, that thread can not be join() (p. 514)’ed upon. The thread
will simply run until the program exits, or its function exits. A joinable thread
means that another thread and call join() (p. 514) upon it. If this function is
called, the caller will block until the thread exits its function. This gives a way
to synchronize upon the lifespan of threads.

Calling cancel() (p. 514) will cancel the thread.

The static function self() (p. 516) will return a thread

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

516 Aria Class Documentation

4.126.2 Member Enumeration Documentation

4.126.2.1 enum ArThread::Status

Enumeration values:
STATUS FAILED Failed to create the thread.

STATUS NORESOURCE Not enough system resources to create the
thread.

STATUS NO SUCH THREAD The thread can no longer be found.

STATUS INVALID Thread is detached or another thread is joining on
it.

STATUS JOIN SELF Thread is your own thread. Can’t join on self.

STATUS ALREADY DETATCHED Thread is already detatched.

4.126.3 Member Function Documentation

4.126.3.1 void ArThread::init (void) [static]

Initialize the internal book keeping structures.

Initializes the internal structures which keep track of what thread is what. This
is called by Aria::init() (p. 224), so the user will not normaly need to call this
function themselves. This funtion ∗must∗ be called from the main thread of the
application. In otherwords, it should be called by main().

4.126.3.2 ArThread ∗ ArThread::self (void) [static]

Returns the instance of your own thread.

If a newly created thread calls self() (p. 516) on itself too soon, this will return
NULL. This is due to the fact that the thread is first created and started. Then
the operating system returns the thread ID and thread that called create()
(p. 513) then updates the list of threads with the new thread ID. There is just
not much that can be done about that. The use should be aware of this caveat.

The documentation for this class was generated from the following files:

• ArThread.h
• ArThread.cpp
• ArThread LIN.cpp
• ArThread WIN.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.127 ArTime Class Reference 517

4.127 ArTime Class Reference

A class for time readings.

#include <ariaUtil.h>

Public Methods

• ArTime ()
Constructor.

• ∼ArTime ()
Destructor.

• long mSecSince (ArTime since) const
Gets the number of milliseconds since the given timestamp to this one.

• long secSince (ArTime since) const
Gets the number of seconds since the given timestamp to this one.

• long mSecTo (void) const
Finds the number of millisecs from when this timestamp is set to to now.

• long secTo (void) const
Finds the number of seconds from when this timestamp is set to to now.

• long mSecSince (void) const
Finds the number of milliseconds from this timestamp to now.

• long secSince (void) const
Finds the number of seconds from when this timestamp was set to now.

• bool isBefore (ArTime testTime) const
returns whether the given time is before this one or not.

• bool isAt (ArTime testTime) const
returns whether the given time is equal to this time or not.

• bool isAfter (ArTime testTime) const
returns whether the given time is after this one or not.

• void setToNow (void)
Sets the time to now.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

518 Aria Class Documentation

• void addMSec (long ms)
Add some milliseconds (can be negative) to this time.

• void setSec (time t sec)
Sets the seconds since 1970.

• void setMSec (time t msec)
Sets the milliseconds.

• time t getSec (void) const
Gets the seconds since 1970.

• time t getMSec (void) const
Gets the milliseconds.

• void log (void) const
Logs the time.

4.127.1 Detailed Description

A class for time readings.

This class is for getting the time of certain events. This class is not for generic
time stuff, just for timeStamping, hence the only commands are very simple and
the accessors for getting the data directly shouldn’t really be used. DON’T use
this for keeping track of what time it is, its just for relative timing (ie this loop
needs to sleep another 100 ms);

The documentation for this class was generated from the following file:

• ariaUtil.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.128 ArTransform Class Reference 519

4.128 ArTransform Class Reference

A class to handle transforms between different coordinates.

#include <ArTransform.h>

Public Methods

• ArTransform ()

Constructor.

• ArTransform (ArPose pose)

Constructor, Sets the transform so points in this coord system transform to
abs world coords.

• ArTransform (ArPose pose1, ArPose pose2)

Constructor, sets the transform so that pose1 will be transformed to pose2.

• virtual ∼ArTransform ()

Destructor.

• ArPose doTransform (ArPose source)

Take the source pose and run the transform on it to put it into abs coordi-
nates.

• ArPoseWithTime doTransform (ArPoseWithTime source)

Take the source pose and run the transform on it to put it into abs coordi-
nates.

• ArPose doInvTransform (ArPose source)

Take the source pose and run the inverse transform on it, taking it from abs
coords to local.

• ArPoseWithTime doInvTransform (ArPoseWithTime source)

Take the source pose and run the inverse transform on it, taking it from abs
coords to local.

• void doTransform (std::list< ArPose ∗> ∗poseList)

Take a std::list of sensor readings and do the transform on it.

• void doTransform (std::list< ArPoseWithTime ∗> ∗poseList)

Take a std::list of sensor readings and do the transform on it.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

520 Aria Class Documentation

• void setTransform (ArPose pose)
Sets the transform so points in this coord system transform to abs world
coords.

• void setTransform (ArPose pose1, ArPose pose2)
Sets the transform so that pose1 will be transformed to pose2.

• double getTh ()
Gets the transform angle value (degrees).

4.128.1 Detailed Description

A class to handle transforms between different coordinates.

4.128.2 Member Function Documentation

4.128.2.1 ArPoseWithTime ArTransform::doInvTransform
(ArPoseWithTime source) [inline]

Take the source pose and run the inverse transform on it, taking it from abs
coords to local.

The source and result can be the same

Parameters:
source the parameter to transform

Returns:
the source transformed from absolute into local coords

4.128.2.2 ArPose ArTransform::doInvTransform (ArPose source)
[inline]

Take the source pose and run the inverse transform on it, taking it from abs
coords to local.

The source and result can be the same

Parameters:
source the parameter to transform

Returns:
the source transformed from absolute into local coords

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.128 ArTransform Class Reference 521

4.128.2.3 ArPoseWithTime ArTransform::doTransform
(ArPoseWithTime source) [inline]

Take the source pose and run the transform on it to put it into abs coordinates.

Parameters:
source the parameter to transform

Returns:
the source transformed into absolute coordinates

4.128.2.4 ArPose ArTransform::doTransform (ArPose source)
[inline]

Take the source pose and run the transform on it to put it into abs coordinates.

Parameters:
source the parameter to transform

Returns:
the source transformed into absolute coordinates

4.128.2.5 void ArTransform::setTransform (ArPose pose1, ArPose
pose2)

Sets the transform so that pose1 will be transformed to pose2.

Parameters:
pose1 transform this into pose2
pose2 transform pose1 into this

4.128.2.6 void ArTransform::setTransform (ArPose pose)

Sets the transform so points in this coord system transform to abs world coords.

Parameters:
pose the coord system from which we transform to abs world coords

The documentation for this class was generated from the following files:

• ArTransform.h
• ArTransform.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

522 Aria Class Documentation

4.129 ArTypes Class Reference

Contains platform independent sized variable types.

#include <ariaTypedefs.h>

Public Types

• typedef char Byte

A single signed byte.

• typedef short Byte2

Two signed bytes.

• typedef int Byte4

Four signed bytes.

• typedef unsigned char UByte

A single unsigned byte.

• typedef unsigned short UByte2

Two unsigned bytes.

• typedef unsigned int UByte4

Four unsigned bytes.

4.129.1 Detailed Description

Contains platform independent sized variable types.

The documentation for this class was generated from the following file:

• ariaTypedefs.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.130 ArUtil Class Reference 523

4.130 ArUtil Class Reference

This class has utility functions.

#include <ariaUtil.h>

Public Types

• enum BITS { BIT0 = 0x1, BIT1 = 0x2, BIT2 = 0x4, BIT3 = 0x8,
BIT4 = 0x10, BIT5 = 0x20, BIT6 = 0x40, BIT7 = 0x80, BIT8 =
0x100, BIT9 = 0x200, BIT10 = 0x400, BIT11 = 0x800, BIT12 =
0x1000, BIT13 = 0x2000, BIT14 = 0x4000, BIT15 = 0x8000 }

Values for the bits from 0 to 16.

• enum REGKEY { REGKEY CLASSES ROOT, REGKEY -
CURRENT CONFIG, REGKEY CURRENT USER,
REGKEY LOCAL MACHINE, REGKEY USERS }

Static Public Methods

• void sleep (unsigned int ms)
Sleep for the given number of milliseconds.

• unsigned int getTime (void)
Get the time in milliseconds.

• template<class T> void deleteSet (T begin, T end)
Delete all members of a set. Does NOT empty the set.

• template<class T> void deleteSetPairs (T begin, T end)
Delete all members of a set. Does NOT empty the set.

• void splitString (std::string inString, std::list< std::string > &outList)
Split a string into a set of words.

• long sizeFile (std::string fileName)
OS-independent way of finding the size of a file.

• bool findFile (const char ∗fileName)
OS-independent way of checking to see if a file exists and is readable.

• bool stripDir (std::string fileIn, std::string &fileOut)
OS-independent way of stripping the directory from the filename.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

524 Aria Class Documentation

• bool stripFile (std::string fileIn, std::string &fileOut)
OS-independent way of stripping the filename from the directory.

• void appendSlash (std::string &path)
Appends a slash to a path if there is not one there already.

• void fixSlashes (std::string &path)
Fix the slash orientation in file path string for windows or linux.

• void fixSlashesForward (std::string &path)
Fix the slash orientation in file path string to be all forward.

• void fixSlashesBackward (std::string &path)
Fix the slash orientation in file path string to be all backward.

• int strcmp (std::string str, std::string str2)
Finds out if two strings are equal.

• int strcmp (std::string str, const char ∗str2)
Finds out if two strings are equal.

• int strcmp (const char ∗str, std::string str2)
Finds out if two strings are equal.

• int strcmp (const char ∗str, const char ∗str2)
Finds out if two strings are equal.

• int strcasecmp (std::string str, std::string str2)
Finds out if two strings are equal (ignoring case).

• int strcasecmp (std::string str, const char ∗str2)
Finds out if two strings are equal (ignoring case).

• int strcasecmp (const char ∗str, std::string str2)
Finds out if two strings are equal (ignoring case).

• int strcasecmp (const char ∗str, const char ∗str2)
Finds out if two strings are equal (ignoring case).

• void escapeSpaces (char ∗dest, const char ∗src, size t maxLen)
Puts a \ before spaces in src, puts it into dest.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.130 ArUtil Class Reference 525

• void lower (char ∗dest, const char ∗src, size t maxLen)
Lowers a string from src into dest, make sure there’s enough space.

• const char ∗ convertBool (int val)
Converts an integer value into a string for true or false.

• std::string getStringFromFile (const char ∗fileName)
Returns a string contained in an arbitrary file.

• bool getStringFromRegistry (REGKEY root, const char ∗key, const
char ∗value, char ∗str, int len)

Returns a string from the Windows registry.

4.130.1 Detailed Description

This class has utility functions.

4.130.2 Member Enumeration Documentation

4.130.2.1 enum ArUtil::BITS

Values for the bits from 0 to 16.

Enumeration values:
BIT0 value of BIT0.

BIT1 value of BIT1.

BIT2 value of BIT2.

BIT3 value of BIT3.

BIT4 value of BIT4.

BIT5 value of BIT5.

BIT6 value of BIT6.

BIT7 value of BIT7.

BIT8 value of BIT8.

BIT9 value of BIT9.

BIT10 value of BIT10.

BIT11 value of BIT11.

BIT12 value of BIT12.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

526 Aria Class Documentation

BIT13 value of BIT13.

BIT14 value of BIT14.

BIT15 value of BIT15.

4.130.2.2 enum ArUtil::REGKEY

These are for passing into getStringFromRegistry

Enumeration values:
REGKEY CLASSES ROOT use HKEY CLASSES ROOT.

REGKEY CURRENT CONFIG use HKEY CURRENT CONFIG.

REGKEY CURRENT USER use HKEY CURRENT USER.

REGKEY LOCAL MACHINE use HKEY LOCAL MACHIE.

REGKEY USERS use HKEY USERS.

4.130.3 Member Function Documentation

4.130.3.1 void ArUtil::appendSlash (std::string & path) [static]

Appends a slash to a path if there is not one there already.

Parameters:
path the path to append a slash to

4.130.3.2 template<class T> void ArUtil::deleteSet (T begin, T
end) [inline, static]

Delete all members of a set. Does NOT empty the set.

Assumes that T is an iterator that supports the operator ∗, operator!= and
operator++. The return is assumed to be a pointer to a class that needs to be
deleted.

4.130.3.3 template<class T> void ArUtil::deleteSetPairs (T begin,
T end) [inline, static]

Delete all members of a set. Does NOT empty the set.

Assumes that T is an iterator that supports the operator ∗∗, operator!= and
operator++. The return is assumed to be a pair. The second value of the pair
is assumed to be a pointer to a class that needs to be deleted.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.130 ArUtil Class Reference 527

4.130.3.4 void ArUtil::escapeSpaces (char ∗ dest, const char ∗ src,
size t maxLen) [static]

Puts a \ before spaces in src, puts it into dest.

This copies src into dest but puts a \ before any spaces in src, escaping them...
its mostly for use with ArArgumentBuilder (p. 114)... make sure you have
at least maxLen spaces in the arrays that you’re passing as dest... this allocates
no memory

4.130.3.5 bool ArUtil::findFile (const char ∗ fileName) [static]

OS-independent way of checking to see if a file exists and is readable.

Returns:
true if file is found

Parameters:
fileName name of the file to size

4.130.3.6 void ArUtil::fixSlashes (std::string & path) [static]

Fix the slash orientation in file path string for windows or linux.

Parameters:
path the path in which to fix the orientation of the slashes

4.130.3.7 void ArUtil::fixSlashesBackward (std::string & path)
[static]

Fix the slash orientation in file path string to be all backward.

Parameters:
path the path in which to fix the orientation of the slashes

4.130.3.8 void ArUtil::fixSlashesForward (std::string & path)
[static]

Fix the slash orientation in file path string to be all forward.

Parameters:
path the path in which to fix the orientation of the slashes

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

528 Aria Class Documentation

4.130.3.9 std::string ArUtil::getStringFromFile (const char ∗
fileName) [static]

Returns a string contained in an arbitrary file.

This function looks in the given filename and extracts a string from the file.
The string can contain spaces or tabs, but a ’\r’ or ’

’ will be treated as the end of the string, and the string cannot have more than
1024 characters. This is mostly for use with Linux to pick up the Aria (p. 221)
directory from a file in /etc, but will work with Linux or Windows.

Parameters:
filename the filename to look in

Returns:
the string that was in the file, or a string with length 0 if the file was not
found or if the file was empty

4.130.3.10 bool ArUtil::getStringFromRegistry (REGKEY root,
const char ∗ key, const char ∗ value, char ∗ str, int len)
[static]

Returns a string from the Windows registry.

This takes a root key, and looks up the given <key> within that root, then
finds the string given to <value> and returns it.

Parameters:
root the root key to use, one of the REGKEY enums
key the name of the key to find
value the value to find the string contained in
str where to put the string sought, or if it could not be found for some

reason an empty (length() == 0) string
len the length of the allocated memory in str

Returns:
true if the string was found, false if it was not found or if there was a
problem such as the string not being long enough

4.130.3.11 unsigned int ArUtil::getTime (void) [static]

Get the time in milliseconds.

Get the time in milliseconds, counting from some arbitrary point. This time is
only valid within this run of the program.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.130 ArUtil Class Reference 529

Returns:
millisecond time

4.130.3.12 void ArUtil::lower (char ∗ dest, const char ∗ src, size t
maxLen) [static]

Lowers a string from src into dest, make sure there’s enough space.

This copies src into dest but makes it lower case make sure you have at least
maxLen arrays that you’re passing as dest... this allocates no memory

4.130.3.13 long ArUtil::sizeFile (std::string fileName) [static]

OS-independent way of finding the size of a file.

Returns:
size in bytes. -1 on error.

Parameters:
fileName name of the file to size

4.130.3.14 void ArUtil::sleep (unsigned int ms) [static]

Sleep for the given number of milliseconds.

This sleeps for the given number of milliseconds... Note in linux it tries to sleep
for 10 ms less than the amount given, which should wind up close to correct...
Linux is broken in this regard and sleeps for too long... it sleeps for the ceiling
of the current 10 ms range, then for an additional 10 ms... so: 11 to 20 ms
sleeps for 30 ms... 21 to 30 ms sleeps for 40 ms... 31 to 40 ms sleeps for 50 ms...
this continues on up to the values we care about of.. 81 to 90 ms sleeps for 100
ms... 91 to 100 ms sleeps for 110 ms... so we’ll sleep for 10 ms less than we want
to, which should put us about right... guh

Parameters:
ms the number of milliseconds to sleep for

4.130.3.15 void ArUtil::splitString (std::string inString, std::list<
std::string > & outList) [static]

Split a string into a set of words.

Takes a string and splits it into a list of words. It appends the words to the
outList. If there is nothing found, it will not touch the outList.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

530 Aria Class Documentation

Parameters:
inString the input string to split

ourList the list in which to store the words that are found

4.130.3.16 int ArUtil::strcasecmp (const char ∗ str, const char ∗
str2) [static]

Finds out if two strings are equal (ignoring case).

This compares two strings ignoring case, it returns an integer less than, equal
to, or greater than zero if str is found, respectively, to be less than, to match,
or be greater than str2.

Parameters:
str the string to compare

str2 the second string to compare

Returns:
an integer less than, equal to, or greater than zero if str is found, respec-
tively, to be less than, to match, or be greater than str2.

4.130.3.17 int ArUtil::strcasecmp (const char ∗ str, std::string str2)
[static]

Finds out if two strings are equal (ignoring case).

This compares two strings ignoring case, it returns an integer less than, equal
to, or greater than zero if str is found, respectively, to be less than, to match,
or be greater than str2.

Parameters:
str the string to compare

str2 the second string to compare

Returns:
an integer less than, equal to, or greater than zero if str is found, respec-
tively, to be less than, to match, or be greater than str2.

4.130.3.18 int ArUtil::strcasecmp (std::string str, const char ∗ str2)
[static]

Finds out if two strings are equal (ignoring case).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.130 ArUtil Class Reference 531

This compares two strings ignoring case, it returns an integer less than, equal
to, or greater than zero if str is found, respectively, to be less than, to match,
or be greater than str2.

Parameters:
str the string to compare
str2 the second string to compare

Returns:
an integer less than, equal to, or greater than zero if str is found, respec-
tively, to be less than, to match, or be greater than str2.

4.130.3.19 int ArUtil::strcasecmp (std::string str, std::string str2)
[static]

Finds out if two strings are equal (ignoring case).

This compares two strings ignoring case, it returns an integer less than, equal
to, or greater than zero if str is found, respectively, to be less than, to match,
or be greater than str2.

Parameters:
str the string to compare
str2 the second string to compare

Returns:
an integer less than, equal to, or greater than zero if str is found, respec-
tively, to be less than, to match, or be greater than str2.

4.130.3.20 int ArUtil::strcmp (const char ∗ str, const char ∗ str2)
[static]

Finds out if two strings are equal.

This compares two strings, it returns an integer less than, equal to, or greater
than zero if str is found, respectively, to be less than, to match, or be greater
than str2.

Parameters:
str the string to compare
str2 the second string to compare

Returns:
an integer less than, equal to, or greater than zero if str is found, respec-
tively, to be less than, to match, or be greater than str2.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

532 Aria Class Documentation

4.130.3.21 int ArUtil::strcmp (const char ∗ str, std::string str2)
[static]

Finds out if two strings are equal.

This compares two strings, it returns an integer less than, equal to, or greater
than zero if str is found, respectively, to be less than, to match, or be greater
than str2.

Parameters:
str the string to compare

str2 the second string to compare

Returns:
an integer less than, equal to, or greater than zero if str is found, respec-
tively, to be less than, to match, or be greater than str2.

4.130.3.22 int ArUtil::strcmp (std::string str, const char ∗ str2)
[static]

Finds out if two strings are equal.

This compares two strings, it returns an integer less than, equal to, or greater
than zero if str is found, respectively, to be less than, to match, or be greater
than str2.

Parameters:
str the string to compare

str2 the second string to compare

Returns:
an integer less than, equal to, or greater than zero if str is found, respec-
tively, to be less than, to match, or be greater than str2.

4.130.3.23 int ArUtil::strcmp (std::string str, std::string str2)
[static]

Finds out if two strings are equal.

This compares two strings, it returns an integer less than, equal to, or greater
than zero if str is found, respectively, to be less than, to match, or be greater
than str2.

Parameters:
str the string to compare

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.130 ArUtil Class Reference 533

str2 the second string to compare

Returns:
an integer less than, equal to, or greater than zero if str is found, respec-
tively, to be less than, to match, or be greater than str2.

4.130.3.24 bool ArUtil::stripDir (std::string fileIn, std::string &
fileOut) [static]

OS-independent way of stripping the directory from the filename.

Works for \ and /. Returns true if something was actualy done. Sets fileOut to
be what ever the answer is.

Returns:
true if the path contains a file

Parameters:
fileIn input path/filename

fileOut output filename

4.130.3.25 bool ArUtil::stripFile (std::string fileIn, std::string &
fileOut) [static]

OS-independent way of stripping the filename from the directory.

Works for \ and /. Returns true if something was actualy done. Sets fileOut to
be what ever the answer is.

Returns:
true if the file contains a path

Parameters:
fileIn input path/filename

fileOut output path

The documentation for this class was generated from the following files:

• ariaUtil.h
• ariaUtil.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

534 Aria Class Documentation

4.131 ArVCC4 Class Reference

Driver for the VCC4.

#include <ArVCC4.h>

Inheritance diagram for ArVCC4::

ArVCC4

ArPTZ

Public Methods

• ArVCC4 (ArRobot ∗robot, bool inverted=false, CommState comm-
Direction=COMM UNKNOWN, bool autoUpdate=true)

Constructor.

• virtual ∼ArVCC4 ()
Destructor.

• virtual bool init (void)
Initializes the camera.

• bool isInitted (void)
Returns true if the camera has been initialized.

• virtual void connectHandler (void)
Internal, attached to robot, inits the camera when robot connects.

• virtual bool packetHandler (ArBasePacket ∗packet)
Handles a packet that was read from the device.

• virtual bool pan (int deg)
Pans to the given degrees.

• virtual bool panRel (int deg)
Pans relative to current position by given degrees.

• virtual bool tilt (int deg)
Tilts to the given degrees.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.131 ArVCC4 Class Reference 535

• virtual bool tiltRel (int deg)
Tilts relative to the current position by given degrees.

• virtual bool panTiltRel (int pdeg, int tdeg)
Pans and tilts relatives to the current position by the given degrees.

• virtual int getMaxPosPan (void) const
Gets the highest positive degree the camera can pan to.

• virtual int getMaxNegPan (void) const
Gets the lowest negative degree the camera can pan to.

• virtual int getMaxPosTilt (void) const
Gets the highest positive degree the camera can tilt to.

• virtual int getMaxNegTilt (void) const
Gets the lowest negative degree the camera can tilt to.

• void getRealPanTilt (void)
Requests that a packet be sent to the camera to retrieve what the camera
thinks are its pan/tilt positions.

• void getRealZoomPos (void)
Requests that a packet be sent to the camera to retrieve what the camera
thinks is its zoom position.

• virtual bool canZoom (void) const
Returns true if camera can zoom (or rather, if it is controlled by this).

• virtual bool panTilt (int pdeg, int tdeg)
Pans and tilts to the given degrees.

• virtual bool zoom (int deg)
Zooms to the given value.

• void addErrorCB (ArFunctor ∗functor, ArListPos::Pos position)
Adds an error callback to a list of callbacks to be called when there is a serious
error in communicating - either the parameters were incorrect, the mode was
incorrect, or there was an unknown error.

• void remErrorCB (ArFunctor ∗functor)
Remove an error callback from the callback list.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

536 Aria Class Documentation

• bool haltPanTilt (void)
Halts all pan-tilt movement.

• bool haltZoom (void)
Halts zoom movement.

• bool panSlew (int deg)
Sets the rate that the unit pans at.

• bool tiltSlew (int deg)
Sets the rate the unit tilts at.

• void preparePacket (ArVCC4Packet ∗packet)
Adds device ID and delimeter to packet buffer.

• virtual int getPan (void) const
The angle the camera was last told to pan to.

• virtual int getTilt (void) const
The angle the camera was last told to tilt to.

• virtual int getZoom (void) const
The value the camera was last told to zoom to.

• int getPanSlew (void)
Gets the current pan slew.

• int getMaxPanSlew (void)
Gets the maximum pan slew.

• int getMinPanSlew (void)
Gets the minimum pan slew.

• int getTiltSlew (void)
Gets the current tilt slew.

• int getMaxTiltSlew (void)
Gets the maximum tilt slew.

• int getMinTiltSlew (void)
Gets the minimum tilt slew.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.131 ArVCC4 Class Reference 537

• virtual int getMaxZoom (void) const
Gets the maximum value for the zoom on this camera.

• virtual int getMinZoom (void) const
Gets the lowest value for the zoom on this camera.

• bool wasError (void)
Returns true if the error callback list was called during the last cycle.

• void enableAutoUpdate (void)
Toggle the state of the auto-update.

Protected Types

• enum Error { CAM ERROR NONE = 0x30, CAM ERROR -
BUSY = 0x31, CAM ERROR PARAM = 0x35, CAM ERROR -
MODE = 0x39, CAM ERROR UNKNOWN = 0xFF }

Protected Methods

• virtual ArBasePacket ∗ readPacket (void)
Reads a packet from the device connection, MUST NOT BLOCK.

4.131.1 Detailed Description

Driver for the VCC4.

4.131.2 Member Enumeration Documentation

4.131.2.1 enum ArVCC4::Error [protected]

Enumeration values:
CAM ERROR NONE No error.

CAM ERROR BUSY Camera busy, will not execute the command.

CAM ERROR PARAM Illegal parameters to function call.

CAM ERROR MODE Not in host control mode.

CAM ERROR UNKNOWN Unknown error condition. Should never
happen.

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

538 Aria Class Documentation

4.131.3 Constructor & Destructor Documentation

4.131.3.1 ArVCC4::ArVCC4 (ArRobot ∗ robot, bool
inverted = false, CommState commDirection =
COMM UNKNOWN, bool autoUpdate = true)

Constructor.

Parameters:
robot the robot this camera is attached to
inverted if this camera is inverted or not, the only time a camera will

normally be inverted is on a robot where it’s mounted on the underside
of something, ie like in a peoplebot

commDirection this is the type of communications that the camera
should use. It can be unidirectional, bidirectional, or unknown. If
unidirectional it sends packets without knowing if the camera has re-
ceived them or not. This results in necessary 300 ms delays between
packets, otherwise the packets will get dropped. In bidirectional mode,
responses are received from the camera and evaluated for success of
receipt of the previous command. In unknown mode, it will use bidi-
rectional communication if a response is received, otherwise it will be
unidirectional.

autoUpate this will cause the usertask to periodically query the camera
for actual positional information (pan, tilt, zoom). This will happen
every 1 sec idle time, and will switch between pan/tilt info and zoom
info.

4.131.4 Member Function Documentation

4.131.4.1 bool ArVCC4::packetHandler (ArBasePacket ∗ packet)
[virtual]

Handles a packet that was read from the device.

This should work for the robot packet handler or for packets read in from read-
Packet (the joys of OO), but it can’t deal with the need to check the id on robot
packets, so you should check the id from robotPacketHandler and then call this
one so that your stuff can be used by both robot and serial port connections.

Parameters:
packet the packet to handle

Returns:
true if this packet was handled (ie this knows what it is), false otherwise

Reimplemented from ArPTZ (p. 309).

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.131 ArVCC4 Class Reference 539

4.131.4.2 ArBasePacket ∗ ArVCC4::readPacket (void) [protected,
virtual]

Reads a packet from the device connection, MUST NOT BLOCK.

This should read in a packet from the myConn connection and return a pointer
to a packet if there was on to read in, or NULL if there wasn’t one... this
MUST not block if it is used with the default mode of being driven from the
sensorInterpHandler, since that is on the robot loop.

Returns:
packet read in, or NULL if there was no packet read

Reimplemented from ArPTZ (p. 309).

The documentation for this class was generated from the following files:

• ArVCC4.h
• ArVCC4.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

540 Aria Class Documentation

4.132 ArVCC4Commands Class Reference

A class with the commands for the VCC4.

#include <ArVCC4.h>

Public Types

• enum Command {DELIM = 0x00, DEVICEID = 0x30, PANSLEW
= 0x50, TILTSLEW = 0x51, STOP = 0x53, INIT = 0x58,
SLEWREQ = 0x59, ANGLEREQ = 0x5c, PANTILT = 0x62, SE-
TRANGE = 0x64, PANTILTREQ = 0x63, CONTROL = 0x90,
POWER = 0xA0, ZOOMSTOP = 0xA2, ZOOM = 0xB3 , FOOTER
= 0xEF, RESPONSE = 0xFE, HEADER = 0xFF }

4.132.1 Detailed Description

A class with the commands for the VCC4.

This class is for controlling the Canon VC-C4 camera.

This camera has a reponse mechanism, whereby each packet sent to the camera
generates an answer within 300ms. For the most part, the answer consists of
a 6-byte packet which has an error-status within it. Some commands generate
longer packets. Receiving the error status is helpful in that you know that the
camera will or will not execute the command. However, it doesn’t tell you when
the command is completed.

In order for the the reponses to work, the CTS line on the camera must be high.
This is pin 2 on the visca port. If your camera is not wired in such a fashion,
then no answers will be sent to the computer, and the computer will not know
whether or not the last packet was processed correctly. Because of this, systems
operating without the answer feature will need to run with delays between
sending packets. Otherwise, packets will be ignored, but you will have no way
of knowing that. To achieve this, there are two types of communication modes
that this class will operate under - COMM UNIDIRECTIONAL or COMM -
BIDIRECTIONAL. The default is COMM UNKNOWN, in which it will use
bidirectional commuication if a response is received.

To handle the states and packet processing, this class runs as a user-task, differ-
ent than the other pan/tilt devices. Because of this, it must have a valid robot
connection and a valid serial connection if using a computer serial port. Note
that the computer port must be set independently of this class. The aux port
can be selected via setAuxPort from the ArPTZ (p. 305) class.

The camera’s pan and tilt commands work on a number of units equal to (de-
grees / 0.1125). The panTilt function always rounds the conversion closer to

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.132 ArVCC4Commands Class Reference 541

zero, so that a magnitude greater than the allowable range of movement is not
sent to the camera.

4.132.2 Member Enumeration Documentation

4.132.2.1 enum ArVCC4Commands::Command

Enumeration values:
DELIM Delimeter character.

DEVICEID Default device ID.

PANSLEW Sets the pan slew.

TILTSLEW Sets the tilt slew.

STOP Stops current pan/tilt motion.

INIT Initializes the camera.

SLEWREQ Request pan/tilt min/max slew.

ANGLEREQ Request pan/tilt min/max angle.

PANTILT Pan/tilt command.

SETRANGE Pan/tilt min/max range assignment.

PANTILTREQ Request pan/tilt position.

CONTROL Puts camera in Control mode.

POWER Turns on/off power.

ZOOMSTOP Stops zoom motion.

ZOOM Zooms camera lens.

FOOTER Packet Footer.

RESPONSE Packet header for response.

HEADER Packet Header.

The documentation for this class was generated from the following file:

• ArVCC4.h

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

542 Aria Class Documentation

4.133 ArVCC4Packet Class Reference

A class for for making commands to send to the VCC4.

#include <ArVCC4.h>

Inheritance diagram for ArVCC4Packet::

ArVCC4Packet

ArBasePacket

Public Methods

• ArVCC4Packet (ArTypes::UByte2 bufferSize=30)
Constructor.

• virtual ∼ArVCC4Packet ()
Destructor.

• virtual void finalizePacket (void)
MakeFinals the packet in preparation for sending, must be done.

4.133.1 Detailed Description

A class for for making commands to send to the VCC4.

There are only a few functioning ways to put things into this packet, you MUST
use thse, if you use anything else your commands won’t work. You must use
byteToBuf and byte2ToBuf.

The documentation for this class was generated from the following files:

• ArVCC4.h
• ArVCC4.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

4.134 P2ArmJoint Class Reference 543

4.134 P2ArmJoint Class Reference

P2 Arm joint info.

#include <ArP2Arm.h>

4.134.1 Detailed Description

P2 Arm joint info.

The documentation for this class was generated from the following files:

• ArP2Arm.h
• ArP2Arm.cpp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

Index

∼ArACTSBlob
ArACTSBlob, 97

∼ArACTS 1 2
ArACTS 1 2, 92

∼ArAMPTU
ArAMPTU, 99

∼ArAMPTUPacket
ArAMPTUPacket, 104

∼ArASyncTask
ArASyncTask, 119

∼ArAction
ArAction, 40

∼ArActionAvoidFront
ArActionAvoidFront, 43

∼ArActionAvoidSide
ArActionAvoidSide, 45

∼ArActionBumpers
ArActionBumpers, 47

∼ArActionConstantVelocity
ArActionConstantVelocity, 49

∼ArActionDesired
ArActionDesired, 51

∼ArActionGroup
ArActionGroup, 63

∼ArActionInput
ArActionInput, 71

∼ArActionJoydrive
ArActionJoydrive, 73

∼ArActionKeydrive
ArActionKeydrive, 77

∼ArActionLimiterBackwards
ArActionLimiterBackwards,

80
∼ArActionLimiterForwards

ArActionLimiterForwards, 82
∼ArActionLimiterTableSensor

ArActionLimiterTableSensor,
84

∼ArActionStallRecover
ArActionStallRecover, 86

∼ArActionStop
ArActionStop, 88

∼ArActionTurn
ArActionTurn, 90

∼ArAnalogGyro
ArAnalogGyro, 106

∼ArArg
ArArg, 110

∼ArArgumentBuilder
ArArgumentBuilder, 114

∼ArArgumentParser
ArArgumentParser, 116

∼ArBasePacket
ArBasePacket, 121

∼ArCondition
ArCondition, 131

∼ArConfig
ArConfig, 133

∼ArConfigGroup
ArConfigGroup, 136

∼ArDPPTU
ArDPPTU, 143

∼ArDPPTUPacket
ArDPPTUPacket, 151

∼ArDeviceConnection
ArDeviceConnection, 137

∼ArFileParser
ArFileParser, 152

∼ArFunctor
ArFunctor, 154

∼ArFunctor1
ArFunctor1, 157

INDEX 545

∼ArFunctor1C
ArFunctor1C, 159

∼ArFunctor2
ArFunctor2, 163

∼ArFunctor2C
ArFunctor2C, 165

∼ArFunctor3
ArFunctor3, 170

∼ArFunctor3C
ArFunctor3C, 174

∼ArFunctorASyncTask
ArFunctorASyncTask, 180

∼ArFunctorC
ArFunctorC, 181

∼ArGlobalFunctor
ArGlobalFunctor, 184

∼ArGlobalFunctor1
ArGlobalFunctor1, 186

∼ArGlobalFunctor2
ArGlobalFunctor2, 189

∼ArGlobalFunctor3
ArGlobalFunctor3, 193

∼ArGlobalRetFunctor
ArGlobalRetFunctor, 198

∼ArGlobalRetFunctor1
ArGlobalRetFunctor1, 200

∼ArGlobalRetFunctor2
ArGlobalRetFunctor2, 203

∼ArGlobalRetFunctor3
ArGlobalRetFunctor3, 207

∼ArGripper
ArGripper, 212

∼ArInterpolation
ArInterpolation, 226

∼ArIrrfDevice
ArIrrfDevice, 228

∼ArJoyHandler
ArJoyHandler, 230

∼ArKeyHandler
ArKeyHandler, 236

∼ArLine
ArLine, 240

∼ArLineSegment
ArLineSegment, 242

∼ArLogFileConnection
ArLogFileConnection, 249

∼ArMode
ArMode, 260

∼ArModeCamera
ArModeCamera, 264

∼ArModeGripper
ArModeGripper, 266

∼ArModeSonar
ArModeSonar, 268

∼ArModeTeleop
ArModeTeleop, 270

∼ArModeUnguardedTeleop
ArModeUnguardedTeleop, 272

∼ArModeWander
ArModeWander, 274

∼ArModule
ArModule, 276

∼ArMutex
ArMutex, 282

∼ArNetServer
ArNetServer, 284

∼ArP2Arm
ArP2Arm, 287

∼ArPTZ
ArPTZ, 305

∼ArPose
ArPose, 299

∼ArPriorityResolver
ArPriorityResolver, 304

∼ArRangeBuffer
ArRangeBuffer, 312

∼ArRangeDevice
ArRangeDevice, 319

∼ArRangeDeviceThreaded
ArRangeDeviceThreaded, 327

∼ArRecurrentTask
ArRecurrentTask, 330

∼ArResolver
ArResolver, 332

∼ArRetFunctor
ArRetFunctor, 334

∼ArRetFunctor1
ArRetFunctor1, 335

∼ArRetFunctor1C
ArRetFunctor1C, 337

∼ArRetFunctor2
ArRetFunctor2, 341

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

546 INDEX

∼ArRetFunctor2C
ArRetFunctor2C, 344

∼ArRetFunctor3
ArRetFunctor3, 349

∼ArRetFunctor3C
ArRetFunctor3C, 353

∼ArRetFunctorC
ArRetFunctorC, 359

∼ArRobot
ArRobot, 362

∼ArRobotConfigPacketReader
ArRobotConfigPacketReader,

418
∼ArRobotPacket

ArRobotPacket, 423
∼ArRobotPacketReceiver

ArRobotPacketReceiver, 425
∼ArRobotPacketSender

ArRobotPacketSender, 428
∼ArRobotParams

ArRobotParams, 432
∼ArRunningAverage

ArRunningAverage, 437
∼ArSectors

ArSectors, 438
∼ArSerialConnection

ArSerialConnection, 444
∼ArSick

ArSick, 451
∼ArSickLogger

ArSickLogger, 468
∼ArSickPacket

ArSickPacket, 471
∼ArSickPacketReceiver

ArSickPacketReceiver, 474
∼ArSignalHandler

ArSignalHandler, 477
∼ArSimpleConnector

ArSimpleConnector, 483
∼ArSocket

ArSocket, 485
∼ArSonarDevice

ArSonarDevice, 492
∼ArSyncTask

ArSyncTask, 501
∼ArTcpConnection

ArTcpConnection, 507
∼ArThread

ArThread, 513
∼ArTime

ArTime, 517
∼ArTransform

ArTransform, 519
∼ArVCC4

ArVCC4, 534
∼ArVCC4Packet

ArVCC4Packet, 542

ABSPAN
ArAMPTUCommands, 102

ABSTILT
ArAMPTUCommands, 102

ACCEL
ArDPPTUCommands, 149

accept
ArSocket, 486

accountForRobotHeading
ArActionDesired, 54

actionHandler
ArRobot, 380

ActionMap
ArResolver, 332

activate
ArAction, 40
ArActionGroup, 63
ArActionInput, 72
ArActionKeydrive, 77
ArMode, 261
ArModeCamera, 264
ArModeGripper, 266
ArModeSonar, 268
ArModeTeleop, 270
ArModeUnguardedTeleop, 272
ArModeWander, 274

activateExclusive
ArActionGroup, 63

ACTIVE
ArTaskState, 506

ActsConstants
ArACTS 1 2, 93

actsHandler
ArACTS 1 2, 93

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 547

add
ArArgumentBuilder, 114
ArRunningAverage, 437

addAction
ArActionGroup, 64
ArRobot, 380

addAngle
ArMath, 255

addAverage
ArActionDesired, 55

addCommand
ArNetServer, 285

addComment
ArConfig, 134

addConfig
ArConfigGroup, 136

addConnectCB
ArRobot, 381
ArSick, 458

addDataCB
ArSick, 458

addDisconnectNormallyCB
ArRobot, 381
ArSick, 459

addDisconnectOnErrorCB
ArRobot, 382
ArSick, 459

addErrorCB
ArVCC4, 535

addFailedConnectCB
ArRobot, 382
ArSick, 460

addGoal
ArSickLogger, 468

addHandler
ArFileParser, 152

addHandlerCB
ArSignalHandler, 479

addInitCallBack
Aria, 223

addKeyHandler
ArKeyHandler, 238

addMSec
ArTime, 518

addNewBranch
ArSyncTask, 502

addNewLeaf
ArSyncTask, 502

addPacketHandler
ArRobot, 383

addParam
ArConfig, 134

addPlain
ArArgumentBuilder, 114

addRangeDevice
ArRobot, 370

addReading
ArInterpolation, 226
ArRangeBuffer, 314
ArRangeDevice, 319
ArSonarDevice, 493

addrHost
ArSocket, 488

addRobot
Aria, 221

addRunExitCB
ArRobot, 383

addSensorInterpTask
ArRobot, 383

addStabilizingCB
ArRobot, 384

addTagToLog
ArSickLogger, 469

addTagToLogPlain
ArSickLogger, 468

addUninitCallBack
Aria, 223

addUserTask
ArRobot, 384

ADSEL
ArCommands, 129

ALREADY CONNECTED
ArP2Arm, 292

ALREADY INITED
ArP2Arm, 291

angleBetween
ArMath, 254

ANGLEREQ
ArVCC4Commands, 541

appendSlash
ArUtil, 526

applyTransform

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

548 INDEX

ArRangeBuffer, 314
ArRangeDevice, 322
ArRobot, 385
ArSensorReading, 441
ArSick, 460

ArAction
∼ArAction, 40
activate, 40
ArAction, 40
deactivate, 41
getArg, 41
getDescription, 41
getDesired, 41
getName, 41
getNumArgs, 41
isActive, 40
log, 41
setNextArgument, 41
setRobot, 41

ArAction, 39
fire, 42

ArActionAvoidFront
∼ArActionAvoidFront, 43
ArActionAvoidFront, 44
getDesired, 43

ArActionAvoidFront, 43
ArActionAvoidFront, 44
fire, 44

ArActionAvoidSide
∼ArActionAvoidSide, 45
ArActionAvoidSide, 45
getDesired, 45

ArActionAvoidSide, 45
ArActionAvoidSide, 45
fire, 46

ArActionBumpers
∼ArActionBumpers, 47
ArActionBumpers, 48
getDesired, 47

ArActionBumpers, 47
ArActionBumpers, 48
fire, 48

ArActionConstantVelocity
∼ArActionConstantVelocity,

49
ArActionConstantVelocity, 49

getDesired, 49
ArActionConstantVelocity, 49

ArActionConstantVelocity, 49
fire, 50

ArActionDesired
∼ArActionDesired, 51
ArActionDesired, 51
getDeltaHeading, 52
getDeltaHeadingStrength, 52
getHeading, 52
getHeadingStrength, 52
getMaxNegVel, 53
getMaxNegVelStrength, 53
getMaxRotVel, 53
getMaxRotVelStrength, 53
getMaxVel, 52
getMaxVelStrength, 53
getRotAccel, 53
getRotAccelStrength, 53
getRotDecel, 53
getRotDecelStrength, 53
getRotVel, 52
getRotVelStrength, 52
getTransAccel, 53
getTransAccelStrength, 53
getTransDecel, 53
getTransDecelStrength, 53
getVel, 52
getVelStrength, 52
reset, 52

ArActionDesired, 51
accountForRobotHeading, 54
addAverage, 55
endAverage, 55
merge, 55
setDeltaHeading, 55
setHeading, 55
setMaxNegVel, 56
setMaxRotVel, 56
setMaxVel, 56
setRotAccel, 57
setRotDecel, 57
setRotVel, 57
setTransAccel, 57
setTransDecel, 58
setVel, 58

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 549

startAverage, 58
ArActionDesiredChannel, 60

MAX STRENGTH, 60
MIN STRENGTH, 60
NO STRENGTH, 60

ArActionGoto
cancelGoal, 61
getCloseDist, 61
getDesired, 62
getGoal, 61
getSpeed, 61
haveAchievedGoal, 61
setCloseDist, 61
setGoal, 61
setSpeed, 61

ArActionGoto, 61
fire, 62

ArActionGroup
∼ArActionGroup, 63
activate, 63
activateExclusive, 63
ArActionGroup, 64
deactivate, 63
getActionList, 63
removeActions, 63

ArActionGroup, 63
addAction, 64
ArActionGroup, 64
remAction, 64

ArActionGroupInput, 66
ArActionGroupStop, 67
ArActionGroupTeleop, 68
ArActionGroupUnguardedTeleop,

69
ArActionGroupWander, 70
ArActionInput

∼ArActionInput, 71
activate, 72
ArActionInput, 72
deltaHeading, 71
deltaHeadingFromCurrent, 71
deltaVel, 71
getDesired, 71
setRotVel, 71
setVel, 71

ArActionInput, 71

ArActionInput, 72
fire, 72

ArActionJoydrive
∼ArActionJoydrive, 73
ArActionJoydrive, 74
getDesired, 74
getJoyHandler, 74
getStopIfNoButtonPressed, 73
joystickInited, 73
setSpeeds, 73
setStopIfNoButtonPressed, 73
setThrottleParams, 73

ArActionJoydrive, 73
ArActionJoydrive, 74
fire, 75
getUseOSCal, 75
setUseOSCal, 75

ArActionKeydrive
∼ArActionKeydrive, 77
activate, 77
ArActionKeydrive, 77
deactivate, 77
down, 78
getDesired, 77
giveUpKeys, 78
left, 78
right, 78
setIncrements, 77
setRobot, 77
setSpeeds, 77
space, 78
takeKeys, 78
up, 78

ArActionKeydrive, 77
fire, 78

ArActionLimiterBackwards
∼ArActionLimiterBackwards,

80
ArActionLimiterBackwards,

81
getDesired, 80

ArActionLimiterBackwards, 80
ArActionLimiterBackwards,

81
fire, 81

ArActionLimiterForwards

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

550 INDEX

∼ArActionLimiterForwards,
82

ArActionLimiterForwards, 83
getDesired, 82

ArActionLimiterForwards, 82
ArActionLimiterForwards, 83
fire, 83

ArActionLimiterTableSensor
∼ArActionLimiterTable-

Sensor, 84
ArActionLimiterTableSensor,

84
getDesired, 84

ArActionLimiterTableSensor, 84
fire, 85

ArActionStallRecover
∼ArActionStallRecover, 86
ArActionStallRecover, 87
getDesired, 86

ArActionStallRecover, 86
ArActionStallRecover, 87
fire, 87

ArActionStop
∼ArActionStop, 88
ArActionStop, 88
getDesired, 88

ArActionStop, 88
ArActionStop, 88
fire, 89

ArActionTurn
∼ArActionTurn, 90
ArActionTurn, 90
getDesired, 90

ArActionTurn, 90
fire, 91

ArACTS 1 2
∼ArACTS 1 2, 92
actsHandler, 93
ArACTS 1 2, 92
BLOB DATA SIZE, 93
DATA HEADER, 93
getData, 93
getRobot, 92
isConnected, 92
MAX BLOBS, 93
MAX DATA, 93

NUM CHANNELS, 93
setRobot, 92

ArACTS 1 2, 92
ActsConstants, 93
closePort, 94
getBlob, 94
getNumBlobs, 94
invert, 94
openPort, 94
receiveBlobInfo, 95
requestPacket, 95
requestQuit, 95

ArACTSBlob
∼ArACTSBlob, 97
ArACTSBlob, 97
getArea, 97
getBottom, 97
getLeft, 97
getRight, 97
getTop, 97
getXCG, 97
getYCG, 97
log, 98
setArea, 97
setBottom, 98
setLeft, 98
setRight, 98
setTop, 98
setXCG, 97
setYCG, 97

ArACTSBlob, 97
ArAMPTU

∼ArAMPTU, 99
ArAMPTU, 101
canZoom, 100
getMaxNegPan, 100
getMaxNegTilt, 100
getMaxPosPan, 100
getMaxPosTilt, 100
getPan, 100
getTilt, 100
init, 99
pan, 99
panRel, 99
panSlew, 100
panTilt, 99

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 551

panTiltRel, 99
pause, 100
purge, 100
requestStatus, 100
resume, 100
tilt, 99
tiltRel, 99
tiltSlew, 100

ArAMPTU, 99
ArAMPTU, 101

ArAMPTUCommands
ABSPAN, 102
ABSTILT, 102
CONT, 102
INIT, 103
PANSLEW, 103
PANTILT, 102
PANTILTDCCW, 102
PANTILTDCW, 102
PANTILTUCCW, 102
PANTILTUCW, 102
PAUSE, 102
PURGE, 102
RELPANCCW, 102
RELPANCW, 102
RELTILTD, 102
RELTILTU, 102
RESP, 103
STATUS, 102
TILTSLEW, 103
ZOOM, 102

ArAMPTUCommands, 102
ArAMPTUPacket

∼ArAMPTUPacket, 104
ArAMPTUPacket, 104
byte2ToBuf, 104
byteToBuf, 104
finalizePacket, 104

ArAMPTUPacket, 104
getUnitNumber, 105
setUnitNumber, 105

ArAnalogGyro
∼ArAnalogGyro, 106
ArAnalogGyro, 106
encoderCorrect, 107
getAverage, 106

getAverageTaken, 106
getHeading, 106
getPacCount, 106
getScalingFactor, 106
getTemperature, 106
handleGyroPacket, 106
isActive, 106
setScalingFactor, 106
stabilizingCallback, 107

ArAnalogGyro, 106
setFilterModel, 108

ArArg
∼ArArg, 110
ArArg, 109, 112
BOOL, 112
clear, 111
DESCRIPTION HOLDER,

112
DOUBLE, 112
FUNCTOR, 112
getArgsWithFunctor, 111
getBool, 110
getDescription, 110
getDouble, 110
getInt, 110
getMaxDouble, 111
getMaxInt, 111
getMinDouble, 111
getMinInt, 111
getName, 110
getPose, 110
getString, 111
INT, 112
INVALID, 112
log, 111
POSE, 112
setArgWithFunctor, 110
setBool, 110
setDouble, 110
setInt, 110
setPose, 110
setString, 110
STRING, 112

ArArg, 109
ArArg, 112
getType, 112

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

552 INDEX

Type, 112
ArArgumentBuilder

∼ArArgumentBuilder, 114
add, 114
addPlain, 114
ArArgumentBuilder, 114
getArg, 115
getArgBool, 115
getArgc, 114
getArgDouble, 115
getArgInt, 115
getArgv, 114
getExtraString, 114
getFullString, 114
isArgBool, 115
isArgDouble, 115
isArgInt, 115
log, 114
removeArg, 115
setExtraString, 114
setFullString, 114

ArArgumentBuilder, 114
ArArgumentParser

∼ArArgumentParser, 116
ArArgumentParser, 117
getArgc, 116
log, 116

ArArgumentParser, 116
ArArgumentParser, 117
checkArgument, 117
checkParameterArgument, 117

ArASyncTask
∼ArASyncTask, 119
ArASyncTask, 119
create, 119
run, 119
runAsync, 119
stopRunning, 119

ArASyncTask, 119
runInThisThread, 120
runThread, 120

ArBasePacket
∼ArBasePacket, 121
ArBasePacket, 124
bufToByte, 122
bufToByte2, 122

bufToByte4, 122
bufToUByte, 122
bufToUByte2, 122
bufToUByte4, 122
byte2ToBuf, 121
byte4ToBuf, 121
byteToBuf, 121
finalizePacket, 121
getBuf, 123
getDataLength, 123
getDataReadLength, 123
getFooterLength, 123
getHeaderLength, 123
getLength, 123
getMaxLength, 123
getReadLength, 123
log, 121
printHex, 121
setBuf, 123
setHeaderLength, 123
setLength, 123
setReadLength, 123
uByte2ToBuf, 122
uByte4ToBuf, 122
uByteToBuf, 122

ArBasePacket, 121
ArBasePacket, 124
bufToData, 125
bufToStr, 125
dataToBuf, 125
duplicatePacket, 125
empty, 126
resetRead, 126
strNToBuf, 126
strToBuf, 126
strToBufPadded, 126

ArCommands
ADSEL, 129
BUMPSTALL, 129
CALCOMP, 130
CLOSE, 128
CONFIG, 129
DCHEAD, 129
DHEAD, 129
DIGOUT, 129
ENABLE, 128

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 553

ENCODER, 129
ENDSIM, 129
ESTOP, 129
GETAUX, 129
GRIPPER, 129
GRIPPERPACREQUEST,

129
GRIPPERVAL, 129
HEAD, 129
IOREQUEST, 129
JOYDRIVE, 129
LOADPARAM, 129
LOADWORLD, 129
MOVE, 128
OPEN, 128
PLAYLIST, 130
POLLING, 128
PTUPOS, 129
PULSE, 128
RESETSIMTOORIGIN, 130
ROTATE, 129
RVEL, 129
SAY, 129
SETA, 128
SETO, 128
SETRA, 129
SETRV, 129
SETSIMORIGINTH, 130
SETSIMORIGINX, 130
SETSIMORIGINY, 130
SETV, 128
SONAR, 129
SOUND, 130
SOUNDTOG, 130
STEP, 129
STOP, 129
TCM2, 129
TTY2, 129
VEL, 129
VEL2, 129

ArCommands, 128
Commands, 128

ArCondition
∼ArCondition, 131
ArCondition, 131
broadcast, 131

getError, 131
signal, 131
STATUS FAILED, 132
STATUS FAILED -

DESTROY, 132
STATUS FAILED INIT, 132
STATUS MUTEX FAILED,

132
STATUS MUTEX FAILED -

INIT, 132
STATUS WAIT INTR, 132
STATUS WAIT TIMEDOUT,

132
timedWait, 131
wait, 131

ArCondition, 131
typedef, 132

ArConfig
∼ArConfig, 133
addComment, 134
addParam, 134
ArConfig, 133
getBaseDirectory, 134
parseFile, 134
setBaseDirectory, 134

ArConfig, 133
parseArgument, 134
processFile, 135
writeFile, 135

ArConfigGroup
∼ArConfigGroup, 136
addConfig, 136
ArConfigGroup, 136
getBaseDirectory, 136
parseFile, 136
reloadFile, 136
remConfig, 136
setBaseDirectory, 136
writeFile, 136

ArConfigGroup, 136
ArDeviceConnection

∼ArDeviceConnection, 137
ArDeviceConnection, 137
openSimple, 138
STATUS CLOSED ERROR,

138

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

554 INDEX

STATUS CLOSED -
NORMALLY, 138

STATUS NEVER OPENED,
138

STATUS OPEN, 138
STATUS OPEN FAILED, 138

ArDeviceConnection, 137
close, 139
getOpenMessage, 139
getStatus, 139
getStatusMessage, 139
getTimeRead, 140
isTimeStamping, 140
read, 140
Status, 138
write, 141
writePacket, 141

ArDPPTU
∼ArDPPTU, 143
ArDPPTU, 143
awaitExec, 145
basePanSlew, 146
baseTiltSlew, 146
canZoom, 143
disableReset, 143
disMon, 145
enMon, 145
factorySet, 144
getBasePanSlew, 147
getBaseTiltSlew, 147
getMaxNegPan, 145
getMaxNegTilt, 145
getMaxPosPan, 145
getMaxPosTilt, 145
getPan, 147
getPanAccel, 147
getPanSlew, 147
getTilt, 147
getTiltAccel, 147
getTiltSlew, 147
haltAll, 145
haltPan, 145
haltTilt, 145
highMotPower, 146
immedExec, 144
indepMove, 146

init, 143
initMon, 145
limitEnforce, 144
lowerPanSlew, 146
lowerTiltSlew, 146
lowMotPower, 146
lowStatPower, 146
MAX PAN ACCEL, 148
MAX PAN SLEW, 148
MAX TILT, 148
MAX TILT ACCEL, 148
MAX TILT SLEW, 148
MIN PAN, 148
MIN PAN ACCEL, 148
MIN PAN SLEW, 148
MIN TILT, 148
MIN TILT ACCEL, 148
MIN TILT SLEW, 148
myPan, 147
offStatPower, 145
pan, 144
panAccel, 146
panRel, 144
panSlew, 147
panSlewRel, 147
panTilt, 144
panTiltRel, 144
regMotPower, 146
regStatPower, 145
resetAll, 144
resetCalib, 143
resetPan, 144
resetTilt, 144
restoreSet, 144
saveSet, 144
slaveExec, 145
tilt, 144
tiltAccel, 146
tiltRel, 144
tiltSlew, 147
tiltSlewRel, 147
upperPanSlew, 146
upperTiltSlew, 146
velMove, 146

ArDPPTU, 143
blank, 148

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 555

ArDPPTUCommands
ACCEL, 149
BASE, 149
CONTROL, 149
DELIM, 149
DISABLE, 149
ENABLE, 149
FACTORY, 149
HALT, 149
IMMED, 150
INIT, 149
LIMIT, 150
MONITOR, 150
OFFSET, 150
PAN, 150
RESET, 150
SPEED, 150
TILT, 150
UPPER, 150
VELOCITY, 150

ArDPPTUCommands, 149
ArDPPTUPacket

∼ArDPPTUPacket, 151
ArDPPTUPacket, 151
finalizePacket, 151

ArDPPTUPacket, 151
areMotorsEnabled

ArRobot, 366
areSonarsEnabled

ArRobot, 367
ArFileParser

∼ArFileParser, 152
addHandler, 152
ArFileParser, 152
getBaseDirectory, 152
getHandler, 152
parseFile, 152
remHandler, 152
setBaseDirectory, 152

ArFileParser, 152
ArFunctor

∼ArFunctor, 154
invoke, 154

ArFunctor, 154
ArFunctor1

∼ArFunctor1, 157

invoke, 157
ArFunctor1, 157

invoke, 158
ArFunctor1C

∼ArFunctor1C, 159
ArFunctor1C, 159–161
invoke, 159

ArFunctor1C, 159
ArFunctor1C, 160, 161
invoke, 161
setP1, 161
setThis, 161, 162

ArFunctor2
∼ArFunctor2, 163
invoke, 163

ArFunctor2, 163
invoke, 164

ArFunctor2C
∼ArFunctor2C, 165
ArFunctor2C, 165–167
invoke, 166

ArFunctor2C, 165
ArFunctor2C, 166, 167
invoke, 168
setP1, 168
setP2, 168
setThis, 169

ArFunctor3
∼ArFunctor3, 170
invoke, 170

ArFunctor3, 170
invoke, 171

ArFunctor3C
∼ArFunctor3C, 174
ArFunctor3C, 173, 175–177
invoke, 174

ArFunctor3C, 173
ArFunctor3C, 175–177
invoke, 177, 178
setP1, 178
setP2, 178
setP3, 178
setThis, 179

ArFunctorASyncTask
∼ArFunctorASyncTask, 180
ArFunctorASyncTask, 180

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

556 INDEX

runThread, 180
ArFunctorASyncTask, 180
ArFunctorC

∼ArFunctorC, 181
ArFunctorC, 181, 182
invoke, 181

ArFunctorC, 181
ArFunctorC, 182
setThis, 182

ArGlobalFunctor
∼ArGlobalFunctor, 184
ArGlobalFunctor, 184, 185
invoke, 184

ArGlobalFunctor, 184
ArGlobalFunctor, 185

ArGlobalFunctor1
∼ArGlobalFunctor1, 186
ArGlobalFunctor1, 186, 187
invoke, 186

ArGlobalFunctor1, 186
ArGlobalFunctor1, 187
invoke, 187
setP1, 187

ArGlobalFunctor2
∼ArGlobalFunctor2, 189
ArGlobalFunctor2, 189, 190
invoke, 189

ArGlobalFunctor2, 189
ArGlobalFunctor2, 190
invoke, 191
setP1, 191
setP2, 191

ArGlobalFunctor3
∼ArGlobalFunctor3, 193
ArGlobalFunctor3, 193–195
invoke, 193

ArGlobalFunctor3, 193
ArGlobalFunctor3, 194, 195
invoke, 196
setP1, 196
setP2, 197
setP3, 197

ArGlobalRetFunctor
∼ArGlobalRetFunctor, 198
ArGlobalRetFunctor, 198, 199
invokeR, 198

ArGlobalRetFunctor, 198
ArGlobalRetFunctor, 199

ArGlobalRetFunctor1
∼ArGlobalRetFunctor1, 200
ArGlobalRetFunctor1, 200,

201
invokeR, 200

ArGlobalRetFunctor1, 200
ArGlobalRetFunctor1, 201
invokeR, 201
setP1, 202

ArGlobalRetFunctor2
∼ArGlobalRetFunctor2, 203
ArGlobalRetFunctor2, 203,

204
invokeR, 203

ArGlobalRetFunctor2, 203
ArGlobalRetFunctor2, 204
invokeR, 205
setP1, 205
setP2, 205

ArGlobalRetFunctor3
∼ArGlobalRetFunctor3, 207
ArGlobalRetFunctor3, 207–

209
invokeR, 207

ArGlobalRetFunctor3, 207
ArGlobalRetFunctor3, 208,

209
invokeR, 209, 210
setP1, 210
setP2, 210
setP3, 211

ArGripper
∼ArGripper, 212
ArGripper, 214
connectHandler, 214
GENIO, 214
GRIPPAC, 214
logState, 214
NOGRIPPER, 214
packetHandler, 214
QUERYTYPE, 214
USERIO, 214

ArGripper, 212
ArGripper, 214

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 557

getBreakBeamState, 215
getGraspTime, 215
getGripState, 215
getMSecSinceLastPacket, 215
getPaddleState, 215
getType, 216
gripClose, 216
gripOpen, 216
gripperDeploy, 216
gripperHalt, 217
gripperStore, 217
gripPressure, 216
gripStop, 216
isGripMoving, 217
isLiftMaxed, 217
isLiftMoving, 217
liftCarry, 217
liftDown, 218
liftStop, 218
liftUp, 218
setType, 218
Type, 214

ArGripperCommands
GRIP CLOSE, 219
GRIP OPEN, 219
GRIP PRESSURE, 219
GRIP STOP, 219
GRIPPER DEPLOY, 219
GRIPPER HALT, 219
GRIPPER STORE, 219
LIFT CARRY, 220
LIFT DOWN, 219
LIFT STOP, 219
LIFT UP, 219

ArGripperCommands, 219
Commands, 219

Aria, 221
addInitCallBack, 223
addRobot, 221
addUninitCallBack, 223
delRobot, 221
exit, 223
findRobot, 223
getDirectory, 223
getJoyHandler, 222
getKeyHandler, 222

getRobotList, 222
getRunning, 224
init, 224
setDirectory, 225
setJoyHandler, 222
setKeyHandler, 222
shutdown, 225
SIGHANDLE NONE, 222
SIGHANDLE SINGLE, 222
SIGHANDLE THREAD, 222
SigHandleMethod, 222
signalHandlerCB, 222
uninit, 225

ArInterpolation
∼ArInterpolation, 226
addReading, 226
ArInterpolation, 226
getNumberOfReadings, 226
reset, 226
setNumberOfReadings, 226

ArInterpolation, 226
getPose, 227

ArIrrfDevice
∼ArIrrfDevice, 228
ArIrrfDevice, 228
setCumulativeMaxRange, 228
setRobot, 228

ArIrrfDevice, 228
packetHandler, 229

ArJoyHandler
∼ArJoyHandler, 230
ArJoyHandler, 232
getSpeeds, 231
getStats, 231
haveJoystick, 230
haveZAxis, 230
init, 230
setSpeeds, 230
setStats, 231

ArJoyHandler, 230
ArJoyHandler, 232
endCal, 232
getAdjusted, 232
getAxis, 233
getButton, 233
getDoubles, 233

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

558 INDEX

getNumAxes, 233
getNumButtons, 234
getUnfiltered, 234
getUseOSCal, 234
setUseOSCal, 234
startCal, 235

ArKeyHandler
∼ArKeyHandler, 236
ArKeyHandler, 237
BACKSPACE, 237
checkKeys, 236
DOWN, 237
ENTER, 237
ESCAPE, 237
F1, 237
F2, 237
F3, 237
F4, 237
getKey, 236
LEFT, 237
restore, 236
RIGHT, 237
SPACE, 237
TAB, 237
UP, 237

ArKeyHandler, 236
addKeyHandler, 238
ArKeyHandler, 237
KEY, 237
remKeyHandler, 238

ArLine
∼ArLine, 240
ArLine, 240
getA, 240
getB, 240
getC, 240
makeLinePerp, 240
newParameters, 240
newParametersFrom-

Endpoints, 240
ArLine, 240

intersects, 241
ArLineSegment

∼ArLineSegment, 242
ArLineSegment, 242
getA, 242

getB, 243
getC, 243
getX1, 242
getX2, 242
getY1, 242
getY2, 242
linePointIsInSegment, 243
myX1, 243
myX2, 243
myY1, 243
myY2, 243
newEndPoints, 242

ArLineSegment, 242
getPerpPoint, 243, 244
intersects, 244

ArListPos
FIRST, 246
LAST, 246

ArListPos, 246
Pos, 246

ArLog
close, 247
Colbert, 248
File, 248
logPlain, 247
None, 248
Normal, 247
StdErr, 248
StdOut, 248
Terse, 247
Verbose, 248

ArLog, 247
init, 248
log, 248
LogLevel, 247
LogType, 248

ArLogFileConnection
∼ArLogFileConnection, 249
ArLogFileConnection, 249
internalOpen, 250
OPEN FILE NOT FOUND,

250
OPEN NOT A LOG FILE,

250
openSimple, 249

ArLogFileConnection, 249

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 559

close, 250
getLogFile, 250
getOpenMessage, 251
getStatus, 251
getTimeRead, 251
isTimeStamping, 252
Open, 250
open, 252
read, 252
write, 253

ArMath
angleBetween, 254
pointRotate, 254
random, 255

ArMath, 254
addAngle, 255
atan2, 255
cos, 256
degToRad, 256
distanceBetween, 256
fabs, 256
fixAngle, 257
radToDeg, 257
roundInt, 257
sin, 257
squaredDistanceBetween, 258
subAngle, 258

ArmGood
ArP2Arm, 290

ArmHoming
ArP2Arm, 290

ArmInited
ArP2Arm, 290

ArmJoint1
ArP2Arm, 290

ArmJoint2
ArP2Arm, 290

ArmJoint3
ArP2Arm, 290

ArmJoint4
ArP2Arm, 290

ArmJoint5
ArP2Arm, 290

ArmJoint6
ArP2Arm, 290

ArMode

∼ArMode, 260
activate, 261
ArMode, 262
baseHelp, 261
deactivate, 261
getKey, 261
getKey2, 261
getName, 260
userTask, 261

ArMode, 260
ArMode, 262
baseActivate, 262
baseDeactivate, 262
help, 262

ArModeCamera
∼ArModeCamera, 264
activate, 264
ArModeCamera, 264
deactivate, 264
userTask, 264

ArModeCamera, 264
help, 265

ArModeGripper
∼ArModeGripper, 266
activate, 266
ArModeGripper, 266
deactivate, 266
userTask, 266

ArModeGripper, 266
help, 267

ArModeSonar
∼ArModeSonar, 268
activate, 268
ArModeSonar, 268
deactivate, 268
userTask, 268

ArModeSonar, 268
help, 269

ArModeTeleop
∼ArModeTeleop, 270
activate, 270
ArModeTeleop, 270
deactivate, 270
userTask, 270

ArModeTeleop, 270
help, 271

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

560 INDEX

ArModeUnguardedTeleop
∼ArModeUnguardedTeleop,

272
activate, 272
ArModeUnguardedTeleop, 272
deactivate, 272
userTask, 272

ArModeUnguardedTeleop, 272
help, 273

ArModeWander
∼ArModeWander, 274
activate, 274
ArModeWander, 274
deactivate, 274
userTask, 274

ArModeWander, 274
help, 275

ArModule
∼ArModule, 276
ArModule, 276
exit, 276
getRobot, 276
myRobot, 276
setRobot, 276

ArModule, 276
init, 277

ArModuleLoader
closeAll, 279
STATUS ALREADY -

LOADED, 280
STATUS EXIT FAILED, 280
STATUS FAILED OPEN, 280
STATUS INIT FAILED, 280
STATUS INVALID, 280
STATUS NOT FOUND, 280
STATUS SUCCESS, 280

ArModuleLoader, 279
close, 280
load, 280
reload, 281
Status, 280

ArmPower
ArP2Arm, 290

ArMutex
∼ArMutex, 282
ArMutex, 282

getError, 282
getMutex, 282
STATUS ALREADY -

LOCKED, 283
STATUS FAILED, 283
STATUS FAILED INIT, 283
unlock, 282

ArMutex, 282
lock, 283
Status, 283
tryLock, 283

ArNetServer
∼ArNetServer, 284
ArNetServer, 284
close, 284
internalEcho, 285
internalGreeting, 284
internalHelp, 285
internalQuit, 285
internalShutdown, 285
isOpen, 284
parseCommandOnSocket, 285
runOnce, 284
sendToAllClientsPlain, 284

ArNetServer, 284
addCommand, 285
open, 285
remCommand, 286
sendToAllClients, 286

ArP2Arm
∼ArP2Arm, 287
ALREADY CONNECTED,

292
ALREADY INITED, 291
ArmGood, 290
ArmHoming, 290
ArmInited, 290
ArmJoint1, 290
ArmJoint2, 290
ArmJoint3, 290
ArmJoint4, 290
ArmJoint5, 290
ArmJoint6, 290
ArmPower, 290
ArP2Arm, 287
COMM FAILED, 291

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 561

convertDegToTicks, 289
convertTicksToDeg, 290
COULD NOT OPEN PORT,

291
COULD NOT SET UP -

PORT, 292
getArmVersion, 289
getJoint, 289
getJointPos, 289
getJointPosTicks, 289
getLastStatusTime, 289
getMoving, 289
getRobot, 289
getStatus, 289
InfoPacket, 291
INVALID JOINT, 292
INVALID POSITION, 292
isGood, 289
isPowered, 289
NO ARM FOUND, 291
NOT CONNECTED, 292
NOT INITED, 291
NumJoints, 290
park, 288
ROBOT NOT SETUP, 291
setPacketCB, 289
setRobot, 287
setStoppedCB, 289
StatusContinuous, 292
StatusOff, 292
StatusPacket, 291
StatusSingle, 292
SUCCESS, 291

ArP2Arm, 287
checkArm, 292
home, 293
init, 293
moveStep, 293
moveStepTicks, 293
moveTo, 294
moveToTicks, 294
moveVel, 295
PacketType, 291
powerOff, 295
powerOn, 296
requestInfo, 296

requestInit, 296
requestStatus, 297
setAutoParkTimer, 297
setGripperParkTimer, 297
State, 291
StatusType, 292
stop, 297
uninit, 298

ArPose
∼ArPose, 299
ArPose, 299, 300
getTh, 300
getThRad, 300
getX, 300
getY, 300
log, 300
setTh, 299
setThRad, 299
setX, 299
setY, 299

ArPose, 299
ArPose, 300
findAngleTo, 301
findDistanceTo, 301
getPose, 301
setPose, 302
squaredFindDistanceTo, 302

ArPoseWithTime, 303
ArPriorityResolver

∼ArPriorityResolver, 304
ArPriorityResolver, 304

ArPriorityResolver, 304
ArPTZ

∼ArPTZ, 305
ArPTZ, 308
canGetRealPanTilt, 306
canGetRealZoom, 306
canZoom, 305
connectHandler, 307
getAuxPort, 307
getDeviceConnection, 307
getMaxNegPan, 306
getMaxNegTilt, 306
getMaxPosPan, 306
getMaxPosTilt, 306
getMaxZoom, 307

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

562 INDEX

getMinZoom, 307
getPan, 306
getRealPan, 306
getRealTilt, 306
getRealZoom, 306
getTilt, 306
getZoom, 306
init, 305
pan, 305
panRel, 305
panTilt, 305
panTiltRel, 305
sensorInterpHandler, 307
tilt, 305
tiltRel, 305
zoom, 306
zoomRel, 306

ArPTZ, 305
ArPTZ, 308
packetHandler, 309
readPacket, 309
robotPacketHandler, 309
sendPacket, 310
setAuxPort, 310
setDeviceConnection, 310

ArRangeBuffer
∼ArRangeBuffer, 312
ArRangeBuffer, 314
clear, 313
clearOlderThan, 313
clearOlderThanSeconds, 313
getPoseTaken, 312
getSize, 312
reset, 313
setPoseTaken, 312

ArRangeBuffer, 312
addReading, 314
applyTransform, 314
ArRangeBuffer, 314
beginInvalidationSweep, 314
beginRedoBuffer, 314
endInvalidationSweep, 315
endRedoBuffer, 315
getBuffer, 315
getClosestBox, 316
getClosestPolar, 316

invalidateReading, 317
redoReading, 317
setSize, 318

ArRangeDevice
∼ArRangeDevice, 319
addReading, 319
ArRangeDevice, 322
clearCumulativeOlderThan,

321
clearCumulativeOlderThan-

Seconds, 321
clearCumulativeReadings, 321
clearCurrentReadings, 321
getCumulativeBuffer, 320
getCumulativeRangeBuffer,

320
getCurrentBuffer, 320
getCurrentRangeBuffer, 320
getMaxRange, 321
getName, 319
getRobot, 319
setMaxRange, 321
setRobot, 319

ArRangeDevice, 319
applyTransform, 322
ArRangeDevice, 322
cumulativeReadingBox, 322
cumulativeReadingPolar, 323
currentReadingBox, 323
currentReadingPolar, 324
getRawReadings, 325
lockDevice, 325
setCumulativeBufferSize, 325
setCurrentBufferSize, 325
tryLockDevice, 326
unlockDevice, 326

ArRangeDeviceThreaded
∼ArRangeDeviceThreaded,

327
ArRangeDeviceThreaded, 327
getRunning, 327
getRunningWithLock, 327
run, 327
runAsync, 327
runThread, 327
stopRunning, 327

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 563

ArRangeDeviceThreaded, 327
lockDevice, 328
tryLockDevice, 328
unlockDevice, 328

ArRecurrentTask
∼ArRecurrentTask, 330
ArRecurrentTask, 330
go, 330
reset, 330

ArRecurrentTask, 330
done, 331
runThread, 331
task, 331

ArResolver
∼ArResolver, 332
ActionMap, 332
getDescription, 332
getName, 332
resolve, 332

ArResolver, 332
ArRetFunctor

∼ArRetFunctor, 334
invoke, 334
invokeR, 334

ArRetFunctor, 334
ArRetFunctor1

∼ArRetFunctor1, 335
invokeR, 335

ArRetFunctor1, 335
invokeR, 336

ArRetFunctor1C
∼ArRetFunctor1C, 337
ArRetFunctor1C, 337–339
invokeR, 337

ArRetFunctor1C, 337
ArRetFunctor1C, 338, 339
invokeR, 339
setP1, 339
setThis, 340

ArRetFunctor2
∼ArRetFunctor2, 341
invokeR, 341

ArRetFunctor2, 341
invokeR, 342

ArRetFunctor2C
∼ArRetFunctor2C, 344

ArRetFunctor2C, 343, 345, 346
invokeR, 344

ArRetFunctor2C, 343
ArRetFunctor2C, 345, 346
invokeR, 346
setP1, 347
setP2, 347
setThis, 347

ArRetFunctor3
∼ArRetFunctor3, 349
invokeR, 349

ArRetFunctor3, 349
invokeR, 350

ArRetFunctor3C
∼ArRetFunctor3C, 353
ArRetFunctor3C, 352, 354–356
invokeR, 353

ArRetFunctor3C, 352
ArRetFunctor3C, 354–356
invokeR, 356, 357
setP1, 357
setP2, 357
setP3, 357
setThis, 358

ArRetFunctorC
∼ArRetFunctorC, 359
ArRetFunctorC, 359, 360
invokeR, 359

ArRetFunctorC, 359
ArRetFunctorC, 360
setThis, 360

ArRobot
∼ArRobot, 362
addRangeDevice, 370
areMotorsEnabled, 366
areSonarsEnabled, 367
ArRobot, 380
deactivateActions, 374
dropConnection, 378
failedConnect, 378
finishedConnection, 379
getAbsoluteMaxRotVel, 365
getAbsoluteMaxTransVel, 365
getAnalog, 367
getAnalogPortSelected, 367

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

564 INDEX

getBatteryVoltageAverageOf-
Num, 369

getBatteryVoltageNow, 366
getClosestSonarNumber, 369
getClosestSonarRange, 369
getCompass, 367
getCounter, 375
getDigIn, 367
getDigOut, 367
getEncoderPose, 368
getEstop, 368
getFlags, 366
getHeadingDoneDiff, 364
getIOAnalog, 367
getIOAnalogSize, 367
getIODigIn, 367
getIODigInSize, 367
getIODigOut, 367
getIODigOutSize, 367
getIOPacketTime, 368
getKeyHandler, 376
getLeftVel, 366
getMotorPacCount, 368
getMoveDoneDist, 364
getName, 369
getNoTimeWarningThisCycle,

379
getNumFrontBumpers, 368
getNumRearBumpers, 368
getNumSonar, 369
getPose, 365
getPoseInterpNumReadings,

375
getRawEncoderPose, 379
getResolver, 374
getRightVel, 366
getRobotDiagonal, 366
getRobotName, 365
getRobotRadius, 366
getRobotSubType, 365
getRobotType, 365
getRotAccel, 376
getRotDecel, 376
getRotVel, 366
getRotVelMax, 376
getRunExitListCopy, 379

getSonarPacCount, 368
getStallValue, 366
getTh, 365
getTransAccel, 376
getTransDecel, 376
getTransVelMax, 376
getVel, 366
getX, 365
getY, 365
handlePacket, 379
hasFrontBumpers, 368
hasRearBumpers, 368
hasSettableAccsDecs, 376
hasSettableVelMaxes, 376
hasTableSensingIR, 367
incCounter, 377
isCycleChained, 375
isLeftBreakBeamTriggered,

368
isLeftMotorStalled, 366
isLeftTableSensing-

IRTriggered, 367
isRightBreakBeamTriggered,

368
isRightMotorStalled, 366
isRightTableSensing-

IRTriggered, 368
isStabilizing, 377
keyHandlerExit, 378
lock, 376
logActions, 374
madeConnection, 378
processEncoderPacket, 378
processIOPacket, 378
processMotorPacket, 378
processNewSonar, 378
processParamFile, 379
setBatteryVoltageAverageOf-

Num, 369
setCycleChained, 374
setHeadingDoneDiff, 364
setMoveDoneDist, 364
setName, 369
setNoTimeWarningThisCycle,

379

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 565

setPoseInterpNumReadings,
375

setResolver, 374
setRotAccel, 376
setRotDecel, 376
setRotVelMax, 375
setTransAccel, 375
setTransDecel, 375
setTransVelMax, 375
setUpPacketHandlers, 378
setUpSyncList, 378
startStabilization, 379
tryLock, 377
unlock, 377
WAIT CONNECTED, 380
WAIT FAIL, 380
WAIT FAILED CONN, 380
WAIT INTR, 380
WAIT RUN EXIT, 380
WAIT TIMEDOUT, 380

ArRobot, 362
actionHandler, 380
addAction, 380
addConnectCB, 381
addDisconnectNormallyCB,

381
addDisconnectOnErrorCB,

382
addFailedConnectCB, 382
addPacketHandler, 383
addRunExitCB, 383
addSensorInterpTask, 383
addStabilizingCB, 384
addUserTask, 384
applyTransform, 385
ArRobot, 380
asyncConnect, 385
asyncConnectHandler, 386
attachKeyHandler, 386
blockingConnect, 387
checkRangeDevicesCumula-

tiveBox, 387
checkRangeDevicesCumula-

tivePolar, 388
checkRangeDevicesCurrent-

Box, 388

checkRangeDevicesCurrentPo-
lar, 389

clearDirectMotion, 389
com, 390
com2Bytes, 390
comInt, 390
comStr, 390
comStrN, 391
disableMotors, 391
disconnect, 391
enableMotors, 391
findAction, 392
findRangeDevice, 392
findTask, 392, 393
findUserTask, 393
getActionMap, 393
getBatteryVoltage, 394
getConnectionCycleMultiplier,

394
getConnectionTimeoutTime,

394
getControl, 394
getCycleTime, 395
getCycleWarningTime, 395
getDeviceConnection, 395
getDirectMotionPrecedence-

Time, 396
getEncoderCorrectionCall-

back, 396
getEncoderTransform, 396
getLastPacketTime, 397
getOrigRobotConfig, 397
getPoseInterpPosition, 397
getRangeDeviceList, 397
getRobotParams, 398
getSonarRange, 398
getSonarReading, 398
getStabilizingTime, 399
getStateReflectionRefresh-

Time, 399
getSyncTaskRoot, 399
getToGlobalTransform, 399
getToLocalTransform, 400
hasRangeDevice, 400
init, 400
isConnected, 400

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

566 INDEX

isDirectMotion, 400
isHeadingDone, 401
isMoveDone, 401
isRunning, 401
isSonarNew, 402
loadParamFile, 402
logAllTasks, 402
logUserTasks, 402
loopOnce, 402
move, 403
moveTo, 403
packetHandler, 403
remAction, 404
remConnectCB, 404
remDisconnectNormallyCB,

404
remDisconnectOnErrorCB,

405
remFailedConnectCB, 405
remPacketHandler, 405
remRangeDevice, 405, 406
remRunExitCB, 406
remSensorInterpTask, 406
remStabilizingCB, 406
remUserTask, 407
robotLocker, 407
robotUnlocker, 407
run, 407
runAsync, 408
setAbsoluteMaxRotVel, 408
setAbsoluteMaxTransVel, 408
setConnectionCycleMultiplier,

409
setConnectionTimeoutTime,

409
setCycleTime, 409
setCycleWarningTime, 409
setDeadReconPose, 410
setDeltaHeading, 410
setDeviceConnection, 410
setDirectMotionPrecedence-

Time, 411
setEncoderCorrectionCall-

back, 411
setEncoderTransform, 411, 412
setHeading, 412

setRotVel, 412
setStabilizingTime, 412
setStateReflectionRefresh-

Time, 413
setVel, 413
setVel2, 413
stateReflector, 414
stop, 414
stopRunning, 414
waitForConnect, 415
waitForConnectOrConnFail,

415
waitForRunExit, 416
WaitState, 380
wakeAllConnOrFailWait-

ingThreads, 416
wakeAllConnWaitingThreads,

416
wakeAllRunExitWaitingTh-

reads, 416
wakeAllWaitingThreads, 417

ArRobotConfigPacketReader
∼ArRobotConfigPacket-

Reader, 418
ArRobotConfigPacketReader,

422
connected, 421
getAux1Baud, 419
getFrontBumps, 421
getFrontSonar, 419
getHasCharger, 421
getHasGripper, 419
getHasGyro, 421
getHostBaud, 419
getJoyRotVel, 420
getJoyVel, 420
getLowBattery, 419
getName, 419
getNormalMPacs, 420
getPwmMax, 419
getRearBumps, 421
getRearSonar, 419
getResetBaud, 421
getRevCount, 419
getRotAccel, 420
getRotAccelTop, 419

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 567

getRotDecel, 420
getRotKI, 420
getRotKP, 420
getRotKV, 420
getRotVelMax, 420
getRotVelTop, 418
getSerialNumber, 418
getSipCycleTime, 419
getSonarCycle, 421
getStallCount, 420
getStallVal, 420
getSubType, 418
getTransAccel, 420
getTransAccelTop, 419
getTransDecel, 420
getTransKI, 421
getTransKP, 421
getTransKV, 421
getTransVelMax, 420
getTransVelTop, 418
getType, 418
getWatchdog, 419
hasPacketArrived, 418
hasPacketBeenRequested, 418
log, 418
packetHandler, 421
requestPacket, 418

ArRobotConfigPacketReader, 418
ArRobotConfigPacketReader,

422
ArRobotPacket

∼ArRobotPacket, 423
ArRobotPacket, 424
calcCheckSum, 423
finalizePacket, 423
getID, 423
getTimeReceived, 423
setID, 423
setTimeReceived, 423
verifyCheckSum, 423

ArRobotPacket, 423
ArRobotPacket, 424

ArRobotPacketReceiver
∼ArRobotPacketReceiver, 425
ArRobotPacketReceiver, 426
getDeviceConnection, 425

isAllocatingPackets, 425
setDeviceConnection, 425

ArRobotPacketReceiver, 425
ArRobotPacketReceiver, 426
receivePacket, 426

ArRobotPacketSender
∼ArRobotPacketSender, 428
ArRobotPacketSender, 429
getDeviceConnection, 428
setDeviceConnection, 428

ArRobotPacketSender, 428
ArRobotPacketSender, 429
com, 429
com2Bytes, 429
comInt, 430
comStr, 430
comStrN, 430

ArRobotParams
∼ArRobotParams, 432
ArRobotParams, 432
getAbsoluteMaxRotVelocity,

433
getAbsoluteMaxVelocity, 433
getAngleConvFactor, 433
getClassName, 433
getDiffConvFactor, 434
getDistConvFactor, 433
getLaserFlipped, 435
getLaserPort, 435
getLaserPossessed, 434
getLaserPowerControlled, 435
getLaserX, 435
getLaserY, 435
getNumSonar, 434
getRangeConvFactor, 433
getRequestIOPackets, 433
getRobotDiagonal, 433
getRobotRadius, 433
getRotAccel, 435
getRotDecel, 435
getRotVelMax, 435
getSonarTh, 434
getSonarX, 434
getSonarY, 434
getSubClassName, 433
getSwitchToBaudRate, 433

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

568 INDEX

getTransAccel, 435
getTransDecel, 435
getTransVelMax, 435
getVel2Divisor, 434
getVelConvFactor, 433
hasMoveCommand, 433
hasSettableAccsDecs, 435
hasSettableVelMaxes, 435
haveFrontBumpers, 434
haveNewTableSensingIR, 434
haveRearBumpers, 434
haveSonar, 434
haveTableSensingIR, 434
isHolonomic, 433
numFrontBumpers, 434
numRearBumpers, 434
save, 435

ArRobotParams, 432
ArRunningAverage

∼ArRunningAverage, 437
add, 437
ArRunningAverage, 437
clear, 437
getAverage, 437
getNumToAverage, 437
setNumToAverage, 437

ArRunningAverage, 437
ArSectors

∼ArSectors, 438
ArSectors, 438
clear, 438
didAll, 438
update, 438

ArSectors, 438
ArSensorReading

ArSensorReading, 441
ArSensorReading::newData,

440
getEncoderPoseTaken, 440
getLocalPose, 439
getLocalX, 439
getLocalY, 439
getPose, 439
getPoseTaken, 439
getSensorDX, 440
getSensorDY, 440

getSensorTh, 440
getSensorX, 440
getSensorY, 440
getThTaken, 440
getX, 439
getXTaken, 440
getY, 439
getYTaken, 440

ArSensorReading, 439
applyTransform, 441
ArSensorReading, 441
getCounterTaken, 441
getRange, 442
getSensorPosition, 442
isNew, 442
newData, 442
resetSensorPosition, 443

ArSensorReading::newData
ArSensorReading, 440

ArSerialConnection
∼ArSerialConnection, 444
ArSerialConnection, 444
getCTS, 445
getDCD, 445
OPEN ALREADY OPEN,

446
OPEN COULD NOT OPEN -

PORT, 446
OPEN COULD NOT SET -

BAUD, 446
OPEN COULD NOT SET -

UP PORT, 446
OPEN INVALID BAUD -

RATE, 446
openSimple, 444

ArSerialConnection, 444
close, 446
getBaud, 446
getHardwareControl, 446
getOpenMessage, 446
getPort, 447
getStatus, 447
getTimeRead, 447
isTimeStamping, 448
Open, 446
open, 448

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 569

read, 448
setBaud, 449
setHardwareControl, 449
setPort, 449
write, 449

ArSick
∼ArSick, 451
ArSick, 451
BAUD19200, 457
BAUD38400, 457
BAUD9600, 457
DEGREES100, 457
DEGREES180, 457
dropConnection, 456
failedConnect, 456
filterAddAndClean-

Cumulative, 457
filterFarAndOldCumulative,

457
getDegrees, 455
getDeviceConnection, 452
getIncrement, 455
getLastReadingTime, 455
getMinRange, 452
getSensorPosition, 452
getSensorPositionTh, 452
getSensorPositionX, 452
getSensorPositionY, 452
getSickPacCount, 454
INCREMENT HALF, 457
INCREMENT ONE, 457
isConnected, 452
isControllingPower, 455
isLaserFlipped, 455
isUsingSim, 455
madeConnection, 456
processPacket, 456
robotConnectCallback, 456
runOnce, 456
runThread, 455
sensorInterpCallback, 455
setDeviceConnection, 452
setMinRange, 452
setRobot, 456
setSensorPosition, 451, 452
simPacketHandler, 455

STATE CHANGE BAUD, 458
STATE CONFIGURE, 458
STATE CONNECTED, 458
STATE INIT, 458
STATE INSTALL MODE, 458
STATE NONE, 458
STATE SET MODE, 458
STATE START READINGS,

458
STATE WAIT FOR -

CONFIGURE ACK,
458

STATE WAIT FOR -
INSTALL MODE ACK,
458

STATE WAIT FOR -
POWER ON, 458

STATE WAIT FOR SET -
MODE ACK, 458

STATE WAIT FOR START -
ACK, 458

switchState, 457
tryingToConnect, 452

ArSick, 451
addConnectCB, 458
addDataCB, 458
addDisconnectNormallyCB,

459
addDisconnectOnErrorCB,

459
addFailedConnectCB, 460
applyTransform, 460
asyncConnect, 461
BaudRate, 457
blockingConnect, 461
configure, 461
configureShort, 461
Degrees, 457
disconnect, 462
filterReadings, 462
getConnectionTimeoutTime,

462
getFilterCleanCumulativeIn-

terval, 463
getFilterCumulativeCleanDist,

463

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

570 INDEX

getFilterCumulativeInsert-
MaxDist, 463

getFilterCumulativeMaxAge,
463

getFilterCumulativeMaxDist,
463

getFilterCumulativeNearDist,
463

getFilterNearDist, 464
Increment, 457
internalConnectHandler, 464
internalConnectSim, 464
remConnectCB, 464
remDataCB, 464
remDisconnectNormallyCB,

465
remDisconnectOnErrorCB,

465
remFailedConnectCB, 465
runOnRobot, 465
setConnectionTimeoutTime,

466
setFilterCleanCumulativeIn-

terval, 466
setFilterCumulativeCleanDist,

466
setFilterCumulativeInsert-

MaxDist, 466
setFilterCumulativeMaxAge,

467
setFilterCumulativeMaxDist,

467
setFilterCumulativeNearDist,

467
setFilterNearDist, 467
State, 457

ArSickLogger
∼ArSickLogger, 468
addGoal, 468
addTagToLogPlain, 468
ArSickLogger, 469
getDegDiff, 468
getDistDiff, 468
robotTask, 468
setDegDiff, 468
setDistDiff, 468

takeReading, 468
ArSickLogger, 468

addTagToLog, 469
ArSickLogger, 469

ArSickPacket
∼ArSickPacket, 471
ArSickPacket, 471
calcCRC, 471
finalizePacket, 471
getID, 471
getTimeReceived, 472
setTimeReceived, 472
verifyCRC, 471

ArSickPacket, 471
duplicatePacket, 472
getReceivedAddress, 472
getSendingAddress, 473
resetRead, 473
setSendingAddress, 473

ArSickPacketReceiver
∼ArSickPacketReceiver, 474
ArSickPacketReceiver, 475
getDeviceConnection, 474
isAllocatingPackets, 474
setDeviceConnection, 474

ArSickPacketReceiver, 474
ArSickPacketReceiver, 475
receivePacket, 475

ArSignalHandler
∼ArSignalHandler, 477
blockAllThisThread, 478
nameSignal, 478

ArSignalHandler, 477
addHandlerCB, 479
block, 479
blockCommon, 479
blockCommonThisThread, 480
createHandlerNonThreaded,

480
createHandlerThreaded, 480
delHandlerCB, 480
getHandler, 481
handle, 481
runThread, 481
unblock, 481
unblockAll, 482

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 571

unhandle, 482
ArSimpleConnector

∼ArSimpleConnector, 483
ArSimpleConnector, 483
connectRobot, 483
logOptions, 483
parseArgs, 483

ArSimpleConnector, 483
setupLaser, 484
setupRobot, 484

ArSocket
∼ArSocket, 485
accept, 486
addrHost, 488
ArSocket, 485, 489
close, 486
connect, 485
connectTo, 485, 486
copy, 485
create, 485
doStringEcho, 488
findValidPort, 485
getEcho, 487
getError, 487
getErrorStr, 487
getFD, 487
getHostName, 488
getSockName, 486
getType, 487
hostAddr, 488
hostToNetOrder, 488
inAddr, 486
inPort, 486
inToA, 488
maxHostNameLen, 488
netToHostOrder, 488
open, 485
ourInitialized, 488
recvFrom, 486
sendTo, 486
setBroadcast, 486
setDoClose, 487
setEcho, 487
setLinger, 486
setNonBlock, 487
setReuseAddress, 487

sockAddrIn, 486
sockAddrLen, 488
writeString, 487
writeStringPlain, 487

ArSocket, 485
ArSocket, 489
copy, 490
init, 490
read, 490
readString, 490
shutdown, 490
transfer, 491
write, 491

ArSonarDevice
∼ArSonarDevice, 492
ArSonarDevice, 492
processReadings, 492
setCumulativeMaxRange, 492
setRobot, 492

ArSonarDevice, 492
addReading, 493

ArSonyPacket
ArSonyPacket, 494
byte2ToBuf, 494
uByteToBuf, 494

ArSonyPacket, 494
byte2ToBufAtPos, 494

ArSonyPTZ
canZoom, 496
getMaxNegPan, 497
getMaxNegTilt, 497
getMaxPosPan, 497
getMaxPosTilt, 497
getMaxZoom, 497
getMinZoom, 497
getPan, 497
getTilt, 497
getZoom, 497
init, 496
MAX PAN, 498
MAX TILT, 498
MAX ZOOM, 498
MIN ZOOM, 498
pan, 496
panRel, 496
panTilt, 496

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

572 INDEX

panTiltRel, 496
tilt, 496
tiltRel, 496
zoom, 497
zoomRel, 497

ArSonyPTZ, 496
ArSyncTask

ArSyncTask, 501
getFunctor, 500
getName, 500
getState, 499
setState, 499

ArSyncTask, 499
∼ArSyncTask, 501
addNewBranch, 502
addNewLeaf, 502
ArSyncTask, 501
find, 502
findNonRecursive, 503
getNoTimeWarningCB, 503
getWarningTimeCB, 503
log, 504
run, 504
setNoTimeWarningCB, 504
setWarningTimeCB, 504

ArTaskState
ACTIVE, 506
FAILURE, 506
INIT, 506
RESUME, 506
SUCCESS, 506
SUSPEND, 506
USER START, 506

ArTaskState, 506
State, 506

ArTcpConnection
∼ArTcpConnection, 507
ArTcpConnection, 507
getSocket, 508
internalOpen, 508
OPEN BAD HOST, 508
OPEN CON REFUSED, 509
OPEN NET FAIL, 508
OPEN NO ROUTE, 509
openSimple, 507
setStatus, 508

ArTcpConnection, 507
close, 509
getHost, 509
getOpenMessage, 509
getPort, 509
getStatus, 510
getTimeRead, 510
isTimeStamping, 510
Open, 508
open, 510
read, 511
setSocket, 511
write, 511

ArThread
∼ArThread, 513
ArThread, 513
cancel, 514
cancelAll, 515
create, 513
detach, 514
getBlockAllSignals, 514
getFunc, 514
getJoinable, 514
getRunning, 514
getRunningWithLock, 514
getThread, 514
join, 514
joinAll, 515
lock, 514
myRunning, 515
setRunning, 514
STATUS ALREADY -

DETATCHED, 516
STATUS FAILED, 516
STATUS INVALID, 516
STATUS JOIN SELF, 516
STATUS NO SUCH -

THREAD, 516
STATUS NORESOURCE, 516
stopAll, 515
stopRunning, 513
tryLock, 514
unlock, 514
yieldProcessor, 515

ArThread, 513
init, 516

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 573

self, 516
Status, 516

ArTime
∼ArTime, 517
addMSec, 518
ArTime, 517
getMSec, 518
getSec, 518
isAfter, 517
isAt, 517
isBefore, 517
log, 518
mSecSince, 517
mSecTo, 517
secSince, 517
secTo, 517
setMSec, 518
setSec, 518
setToNow, 517

ArTime, 517
ArTransform

∼ArTransform, 519
ArTransform, 519
doTransform, 519
getTh, 520

ArTransform, 519
doInvTransform, 520
doTransform, 520, 521
setTransform, 521

ArTypes
Byte, 522
Byte2, 522
Byte4, 522
UByte, 522
UByte2, 522
UByte4, 522

ArTypes, 522
ArUtil

BIT0, 525
BIT1, 525
BIT10, 525
BIT11, 525
BIT12, 525
BIT13, 525
BIT14, 526
BIT15, 526

BIT2, 525
BIT3, 525
BIT4, 525
BIT5, 525
BIT6, 525
BIT7, 525
BIT8, 525
BIT9, 525
convertBool, 525
REGKEY CLASSES ROOT,

526
REGKEY CURRENT -

CONFIG, 526
REGKEY CURRENT USER,

526
REGKEY LOCAL -

MACHINE, 526
REGKEY USERS, 526

ArUtil, 523
appendSlash, 526
BITS, 525
deleteSet, 526
deleteSetPairs, 526
escapeSpaces, 526
findFile, 527
fixSlashes, 527
fixSlashesBackward, 527
fixSlashesForward, 527
getStringFromFile, 527
getStringFromRegistry, 528
getTime, 528
lower, 529
REGKEY, 526
sizeFile, 529
sleep, 529
splitString, 529
strcasecmp, 530, 531
strcmp, 531, 532
stripDir, 533
stripFile, 533

ArVCC4
∼ArVCC4, 534
addErrorCB, 535
ArVCC4, 538
CAM ERROR BUSY, 537
CAM ERROR MODE, 537

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

574 INDEX

CAM ERROR NONE, 537
CAM ERROR PARAM, 537
CAM ERROR UNKNOWN,

537
canZoom, 535
connectHandler, 534
enableAutoUpdate, 537
getMaxNegPan, 535
getMaxNegTilt, 535
getMaxPanSlew, 536
getMaxPosPan, 535
getMaxPosTilt, 535
getMaxTiltSlew, 536
getMaxZoom, 537
getMinPanSlew, 536
getMinTiltSlew, 536
getMinZoom, 537
getPan, 536
getPanSlew, 536
getRealPanTilt, 535
getRealZoomPos, 535
getTilt, 536
getTiltSlew, 536
getZoom, 536
haltPanTilt, 536
haltZoom, 536
init, 534
isInitted, 534
pan, 534
panRel, 534
panSlew, 536
panTilt, 535
panTiltRel, 535
preparePacket, 536
remErrorCB, 535
tilt, 534
tiltRel, 535
tiltSlew, 536
wasError, 537
zoom, 535

ArVCC4, 534
ArVCC4, 538
Error, 537
packetHandler, 538
readPacket, 538

ArVCC4Commands

ANGLEREQ, 541
CONTROL, 541
DELIM, 541
DEVICEID, 541
FOOTER, 541
HEADER, 541
INIT, 541
PANSLEW, 541
PANTILT, 541
PANTILTREQ, 541
POWER, 541
RESPONSE, 541
SETRANGE, 541
SLEWREQ, 541
STOP, 541
TILTSLEW, 541
ZOOM, 541
ZOOMSTOP, 541

ArVCC4Commands, 540
Command, 541

ArVCC4Packet
∼ArVCC4Packet, 542
ArVCC4Packet, 542
finalizePacket, 542

ArVCC4Packet, 542
asyncConnect

ArRobot, 385
ArSick, 461

asyncConnectHandler
ArRobot, 386

atan2
ArMath, 255

attachKeyHandler
ArRobot, 386

awaitExec
ArDPPTU, 145

BACKSPACE
ArKeyHandler, 237

BASE
ArDPPTUCommands, 149

baseActivate
ArMode, 262

baseDeactivate
ArMode, 262

baseHelp

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 575

ArMode, 261
basePanSlew

ArDPPTU, 146
baseTiltSlew

ArDPPTU, 146
BAUD19200

ArSick, 457
BAUD38400

ArSick, 457
BAUD9600

ArSick, 457
BaudRate

ArSick, 457
beginInvalidationSweep

ArRangeBuffer, 314
beginRedoBuffer

ArRangeBuffer, 314
BIT0

ArUtil, 525
BIT1

ArUtil, 525
BIT10

ArUtil, 525
BIT11

ArUtil, 525
BIT12

ArUtil, 525
BIT13

ArUtil, 525
BIT14

ArUtil, 526
BIT15

ArUtil, 526
BIT2

ArUtil, 525
BIT3

ArUtil, 525
BIT4

ArUtil, 525
BIT5

ArUtil, 525
BIT6

ArUtil, 525
BIT7

ArUtil, 525
BIT8

ArUtil, 525
BIT9

ArUtil, 525
BITS

ArUtil, 525
blank

ArDPPTU, 148
BLOB DATA SIZE

ArACTS 1 2, 93
block

ArSignalHandler, 479
blockAllThisThread

ArSignalHandler, 478
blockCommon

ArSignalHandler, 479
blockCommonThisThread

ArSignalHandler, 480
blockingConnect

ArRobot, 387
ArSick, 461

BOOL
ArArg, 112

broadcast
ArCondition, 131

bufToByte
ArBasePacket, 122

bufToByte2
ArBasePacket, 122

bufToByte4
ArBasePacket, 122

bufToData
ArBasePacket, 125

bufToStr
ArBasePacket, 125

bufToUByte
ArBasePacket, 122

bufToUByte2
ArBasePacket, 122

bufToUByte4
ArBasePacket, 122

BUMPSTALL
ArCommands, 129

Byte
ArTypes, 522

Byte2
ArTypes, 522

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

576 INDEX

byte2ToBuf
ArAMPTUPacket, 104
ArBasePacket, 121
ArSonyPacket, 494

byte2ToBufAtPos
ArSonyPacket, 494

Byte4
ArTypes, 522

byte4ToBuf
ArBasePacket, 121

byteToBuf
ArAMPTUPacket, 104
ArBasePacket, 121

calcCheckSum
ArRobotPacket, 423

calcCRC
ArSickPacket, 471

CALCOMP
ArCommands, 130

CAM ERROR BUSY
ArVCC4, 537

CAM ERROR MODE
ArVCC4, 537

CAM ERROR NONE
ArVCC4, 537

CAM ERROR PARAM
ArVCC4, 537

CAM ERROR UNKNOWN
ArVCC4, 537

cancel
ArThread, 514

cancelAll
ArThread, 515

cancelGoal
ArActionGoto, 61

canGetRealPanTilt
ArPTZ, 306

canGetRealZoom
ArPTZ, 306

canZoom
ArAMPTU, 100
ArDPPTU, 143
ArPTZ, 305
ArSonyPTZ, 496
ArVCC4, 535

checkArgument
ArArgumentParser, 117

checkArm
ArP2Arm, 292

checkKeys
ArKeyHandler, 236

checkParameterArgument
ArArgumentParser, 117

checkRangeDevicesCumulativeBox
ArRobot, 387

checkRangeDevicesCumulativePolar
ArRobot, 388

checkRangeDevicesCurrentBox
ArRobot, 388

checkRangeDevicesCurrentPolar
ArRobot, 389

clear
ArArg, 111
ArRangeBuffer, 313
ArRunningAverage, 437
ArSectors, 438

clearCumulativeOlderThan
ArRangeDevice, 321

clearCumulativeOlderThanSeconds
ArRangeDevice, 321

clearCumulativeReadings
ArRangeDevice, 321

clearCurrentReadings
ArRangeDevice, 321

clearDirectMotion
ArRobot, 389

clearOlderThan
ArRangeBuffer, 313

clearOlderThanSeconds
ArRangeBuffer, 313

CLOSE
ArCommands, 128

close
ArDeviceConnection, 139
ArLog, 247
ArLogFileConnection, 250
ArModuleLoader, 280
ArNetServer, 284
ArSerialConnection, 446
ArSocket, 486
ArTcpConnection, 509

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 577

closeAll
ArModuleLoader, 279

closePort
ArACTS 1 2, 94

Colbert
ArLog, 248

com
ArRobot, 390
ArRobotPacketSender, 429

com2Bytes
ArRobot, 390
ArRobotPacketSender, 429

comInt
ArRobot, 390
ArRobotPacketSender, 430

COMM FAILED
ArP2Arm, 291

Command
ArVCC4Commands, 541

Commands
ArCommands, 128
ArGripperCommands, 219

comStr
ArRobot, 390
ArRobotPacketSender, 430

comStrN
ArRobot, 391
ArRobotPacketSender, 430

CONFIG
ArCommands, 129

configure
ArSick, 461

configureShort
ArSick, 461

connect
ArSocket, 485

connected
ArRobotConfigPacketReader,

421
connectHandler

ArGripper, 214
ArPTZ, 307
ArVCC4, 534

connectRobot
ArSimpleConnector, 483

connectTo

ArSocket, 485, 486
CONT

ArAMPTUCommands, 102
CONTROL

ArDPPTUCommands, 149
ArVCC4Commands, 541

convertBool
ArUtil, 525

convertDegToTicks
ArP2Arm, 289

convertTicksToDeg
ArP2Arm, 290

copy
ArSocket, 485, 490

cos
ArMath, 256

COULD NOT OPEN PORT
ArP2Arm, 291

COULD NOT SET UP PORT
ArP2Arm, 292

create
ArASyncTask, 119
ArSocket, 485
ArThread, 513

createHandlerNonThreaded
ArSignalHandler, 480

createHandlerThreaded
ArSignalHandler, 480

cumulativeReadingBox
ArRangeDevice, 322

cumulativeReadingPolar
ArRangeDevice, 323

currentReadingBox
ArRangeDevice, 323

currentReadingPolar
ArRangeDevice, 324

DATA HEADER
ArACTS 1 2, 93

dataToBuf
ArBasePacket, 125

DCHEAD
ArCommands, 129

deactivate
ArAction, 41
ArActionGroup, 63

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

578 INDEX

ArActionKeydrive, 77
ArMode, 261
ArModeCamera, 264
ArModeGripper, 266
ArModeSonar, 268
ArModeTeleop, 270
ArModeUnguardedTeleop, 272
ArModeWander, 274

deactivateActions
ArRobot, 374

Degrees
ArSick, 457

DEGREES100
ArSick, 457

DEGREES180
ArSick, 457

degToRad
ArMath, 256

deleteSet
ArUtil, 526

deleteSetPairs
ArUtil, 526

delHandlerCB
ArSignalHandler, 480

DELIM
ArDPPTUCommands, 149
ArVCC4Commands, 541

delRobot
Aria, 221

deltaHeading
ArActionInput, 71

deltaHeadingFromCurrent
ArActionInput, 71

deltaVel
ArActionInput, 71

DESCRIPTION HOLDER
ArArg, 112

detach
ArThread, 514

DEVICEID
ArVCC4Commands, 541

DHEAD
ArCommands, 129

didAll
ArSectors, 438

DIGOUT

ArCommands, 129
DISABLE

ArDPPTUCommands, 149
disableMotors

ArRobot, 391
disableReset

ArDPPTU, 143
disconnect

ArRobot, 391
ArSick, 462

disMon
ArDPPTU, 145

distanceBetween
ArMath, 256

doInvTransform
ArTransform, 520

done
ArRecurrentTask, 331

doStringEcho
ArSocket, 488

doTransform
ArTransform, 519–521

DOUBLE
ArArg, 112

DOWN
ArKeyHandler, 237

down
ArActionKeydrive, 78

dropConnection
ArRobot, 378
ArSick, 456

duplicatePacket
ArBasePacket, 125
ArSickPacket, 472

empty
ArBasePacket, 126

ENABLE
ArCommands, 128
ArDPPTUCommands, 149

enableAutoUpdate
ArVCC4, 537

enableMotors
ArRobot, 391

ENCODER
ArCommands, 129

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 579

encoderCorrect
ArAnalogGyro, 107

endAverage
ArActionDesired, 55

endCal
ArJoyHandler, 232

endInvalidationSweep
ArRangeBuffer, 315

endRedoBuffer
ArRangeBuffer, 315

ENDSIM
ArCommands, 129

enMon
ArDPPTU, 145

ENTER
ArKeyHandler, 237

Error
ArVCC4, 537

ESCAPE
ArKeyHandler, 237

escapeSpaces
ArUtil, 526

ESTOP
ArCommands, 129

exit
Aria, 223
ArModule, 276

F1
ArKeyHandler, 237

F2
ArKeyHandler, 237

F3
ArKeyHandler, 237

F4
ArKeyHandler, 237

fabs
ArMath, 256

FACTORY
ArDPPTUCommands, 149

factorySet
ArDPPTU, 144

failedConnect
ArRobot, 378
ArSick, 456

FAILURE

ArTaskState, 506
File

ArLog, 248
filterAddAndCleanCumulative

ArSick, 457
filterFarAndOldCumulative

ArSick, 457
filterReadings

ArSick, 462
finalizePacket

ArAMPTUPacket, 104
ArBasePacket, 121
ArDPPTUPacket, 151
ArRobotPacket, 423
ArSickPacket, 471
ArVCC4Packet, 542

find
ArSyncTask, 502

findAction
ArRobot, 392

findAngleTo
ArPose, 301

findDistanceTo
ArPose, 301

findFile
ArUtil, 527

findNonRecursive
ArSyncTask, 503

findRangeDevice
ArRobot, 392

findRobot
Aria, 223

findTask
ArRobot, 392, 393

findUserTask
ArRobot, 393

findValidPort
ArSocket, 485

finishedConnection
ArRobot, 379

fire
ArAction, 42
ArActionAvoidFront, 44
ArActionAvoidSide, 46
ArActionBumpers, 48
ArActionConstantVelocity, 50

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

580 INDEX

ArActionGoto, 62
ArActionInput, 72
ArActionJoydrive, 75
ArActionKeydrive, 78
ArActionLimiterBackwards,

81
ArActionLimiterForwards, 83
ArActionLimiterTableSensor,

85
ArActionStallRecover, 87
ArActionStop, 89
ArActionTurn, 91

FIRST
ArListPos, 246

fixAngle
ArMath, 257

fixSlashes
ArUtil, 527

fixSlashesBackward
ArUtil, 527

fixSlashesForward
ArUtil, 527

FOOTER
ArVCC4Commands, 541

FUNCTOR
ArArg, 112

GENIO
ArGripper, 214

getA
ArLine, 240
ArLineSegment, 242

getAbsoluteMaxRotVel
ArRobot, 365

getAbsoluteMaxRotVelocity
ArRobotParams, 433

getAbsoluteMaxTransVel
ArRobot, 365

getAbsoluteMaxVelocity
ArRobotParams, 433

getActionList
ArActionGroup, 63

getActionMap
ArRobot, 393

getAdjusted
ArJoyHandler, 232

getAnalog
ArRobot, 367

getAnalogPortSelected
ArRobot, 367

getAngleConvFactor
ArRobotParams, 433

getArea
ArACTSBlob, 97

getArg
ArAction, 41
ArArgumentBuilder, 115

getArgBool
ArArgumentBuilder, 115

getArgc
ArArgumentBuilder, 114
ArArgumentParser, 116

getArgDouble
ArArgumentBuilder, 115

getArgInt
ArArgumentBuilder, 115

getArgsWithFunctor
ArArg, 111

getArgv
ArArgumentBuilder, 114

getArmVersion
ArP2Arm, 289

GETAUX
ArCommands, 129

getAux1Baud
ArRobotConfigPacketReader,

419
getAuxPort

ArPTZ, 307
getAverage

ArAnalogGyro, 106
ArRunningAverage, 437

getAverageTaken
ArAnalogGyro, 106

getAxis
ArJoyHandler, 233

getB
ArLine, 240
ArLineSegment, 243

getBaseDirectory
ArConfig, 134
ArConfigGroup, 136

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 581

ArFileParser, 152
getBasePanSlew

ArDPPTU, 147
getBaseTiltSlew

ArDPPTU, 147
getBatteryVoltage

ArRobot, 394
getBatteryVoltageAverageOfNum

ArRobot, 369
getBatteryVoltageNow

ArRobot, 366
getBaud

ArSerialConnection, 446
getBlob

ArACTS 1 2, 94
getBlockAllSignals

ArThread, 514
getBool

ArArg, 110
getBottom

ArACTSBlob, 97
getBreakBeamState

ArGripper, 215
getBuf

ArBasePacket, 123
getBuffer

ArRangeBuffer, 315
getButton

ArJoyHandler, 233
getC

ArLine, 240
ArLineSegment, 243

getClassName
ArRobotParams, 433

getCloseDist
ArActionGoto, 61

getClosestBox
ArRangeBuffer, 316

getClosestPolar
ArRangeBuffer, 316

getClosestSonarNumber
ArRobot, 369

getClosestSonarRange
ArRobot, 369

getCompass
ArRobot, 367

getConnectionCycleMultiplier
ArRobot, 394

getConnectionTimeoutTime
ArRobot, 394
ArSick, 462

getControl
ArRobot, 394

getCounter
ArRobot, 375

getCounterTaken
ArSensorReading, 441

getCTS
ArSerialConnection, 445

getCumulativeBuffer
ArRangeDevice, 320

getCumulativeRangeBuffer
ArRangeDevice, 320

getCurrentBuffer
ArRangeDevice, 320

getCurrentRangeBuffer
ArRangeDevice, 320

getCycleTime
ArRobot, 395

getCycleWarningTime
ArRobot, 395

getData
ArACTS 1 2, 93

getDataLength
ArBasePacket, 123

getDataReadLength
ArBasePacket, 123

getDCD
ArSerialConnection, 445

getDegDiff
ArSickLogger, 468

getDegrees
ArSick, 455

getDeltaHeading
ArActionDesired, 52

getDeltaHeadingStrength
ArActionDesired, 52

getDescription
ArAction, 41
ArArg, 110
ArResolver, 332

getDesired

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

582 INDEX

ArAction, 41
ArActionAvoidFront, 43
ArActionAvoidSide, 45
ArActionBumpers, 47
ArActionConstantVelocity, 49
ArActionGoto, 62
ArActionInput, 71
ArActionJoydrive, 74
ArActionKeydrive, 77
ArActionLimiterBackwards,

80
ArActionLimiterForwards, 82
ArActionLimiterTableSensor,

84
ArActionStallRecover, 86
ArActionStop, 88
ArActionTurn, 90

getDeviceConnection
ArPTZ, 307
ArRobot, 395
ArRobotPacketReceiver, 425
ArRobotPacketSender, 428
ArSick, 452
ArSickPacketReceiver, 474

getDiffConvFactor
ArRobotParams, 434

getDigIn
ArRobot, 367

getDigOut
ArRobot, 367

getDirectMotionPrecedenceTime
ArRobot, 396

getDirectory
Aria, 223

getDistConvFactor
ArRobotParams, 433

getDistDiff
ArSickLogger, 468

getDouble
ArArg, 110

getDoubles
ArJoyHandler, 233

getEcho
ArSocket, 487

getEncoderCorrectionCallback
ArRobot, 396

getEncoderPose
ArRobot, 368

getEncoderPoseTaken
ArSensorReading, 440

getEncoderTransform
ArRobot, 396

getError
ArCondition, 131
ArMutex, 282
ArSocket, 487

getErrorStr
ArSocket, 487

getEstop
ArRobot, 368

getExtraString
ArArgumentBuilder, 114

getFD
ArSocket, 487

getFilterCleanCumulativeInterval
ArSick, 463

getFilterCumulativeCleanDist
ArSick, 463

getFilterCumulativeInsertMaxDist
ArSick, 463

getFilterCumulativeMaxAge
ArSick, 463

getFilterCumulativeMaxDist
ArSick, 463

getFilterCumulativeNearDist
ArSick, 463

getFilterNearDist
ArSick, 464

getFlags
ArRobot, 366

getFooterLength
ArBasePacket, 123

getFrontBumps
ArRobotConfigPacketReader,

421
getFrontSonar

ArRobotConfigPacketReader,
419

getFullString
ArArgumentBuilder, 114

getFunc
ArThread, 514

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 583

getFunctor
ArSyncTask, 500

getGoal
ArActionGoto, 61

getGraspTime
ArGripper, 215

getGripState
ArGripper, 215

getHandler
ArFileParser, 152
ArSignalHandler, 481

getHardwareControl
ArSerialConnection, 446

getHasCharger
ArRobotConfigPacketReader,

421
getHasGripper

ArRobotConfigPacketReader,
419

getHasGyro
ArRobotConfigPacketReader,

421
getHeaderLength

ArBasePacket, 123
getHeading

ArActionDesired, 52
ArAnalogGyro, 106

getHeadingDoneDiff
ArRobot, 364

getHeadingStrength
ArActionDesired, 52

getHost
ArTcpConnection, 509

getHostBaud
ArRobotConfigPacketReader,

419
getHostName

ArSocket, 488
getID

ArRobotPacket, 423
ArSickPacket, 471

getIncrement
ArSick, 455

getInt
ArArg, 110

getIOAnalog

ArRobot, 367
getIOAnalogSize

ArRobot, 367
getIODigIn

ArRobot, 367
getIODigInSize

ArRobot, 367
getIODigOut

ArRobot, 367
getIODigOutSize

ArRobot, 367
getIOPacketTime

ArRobot, 368
getJoinable

ArThread, 514
getJoint

ArP2Arm, 289
getJointPos

ArP2Arm, 289
getJointPosTicks

ArP2Arm, 289
getJoyHandler

ArActionJoydrive, 74
Aria, 222

getJoyRotVel
ArRobotConfigPacketReader,

420
getJoyVel

ArRobotConfigPacketReader,
420

getKey
ArKeyHandler, 236
ArMode, 261

getKey2
ArMode, 261

getKeyHandler
Aria, 222
ArRobot, 376

getLaserFlipped
ArRobotParams, 435

getLaserPort
ArRobotParams, 435

getLaserPossessed
ArRobotParams, 434

getLaserPowerControlled
ArRobotParams, 435

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

584 INDEX

getLaserX
ArRobotParams, 435

getLaserY
ArRobotParams, 435

getLastPacketTime
ArRobot, 397

getLastReadingTime
ArSick, 455

getLastStatusTime
ArP2Arm, 289

getLeft
ArACTSBlob, 97

getLeftVel
ArRobot, 366

getLength
ArBasePacket, 123

getLocalPose
ArSensorReading, 439

getLocalX
ArSensorReading, 439

getLocalY
ArSensorReading, 439

getLogFile
ArLogFileConnection, 250

getLowBattery
ArRobotConfigPacketReader,

419
getMaxDouble

ArArg, 111
getMaxInt

ArArg, 111
getMaxLength

ArBasePacket, 123
getMaxNegPan

ArAMPTU, 100
ArDPPTU, 145
ArPTZ, 306
ArSonyPTZ, 497
ArVCC4, 535

getMaxNegTilt
ArAMPTU, 100
ArDPPTU, 145
ArPTZ, 306
ArSonyPTZ, 497
ArVCC4, 535

getMaxNegVel

ArActionDesired, 53
getMaxNegVelStrength

ArActionDesired, 53
getMaxPanSlew

ArVCC4, 536
getMaxPosPan

ArAMPTU, 100
ArDPPTU, 145
ArPTZ, 306
ArSonyPTZ, 497
ArVCC4, 535

getMaxPosTilt
ArAMPTU, 100
ArDPPTU, 145
ArPTZ, 306
ArSonyPTZ, 497
ArVCC4, 535

getMaxRange
ArRangeDevice, 321

getMaxRotVel
ArActionDesired, 53

getMaxRotVelStrength
ArActionDesired, 53

getMaxTiltSlew
ArVCC4, 536

getMaxVel
ArActionDesired, 52

getMaxVelStrength
ArActionDesired, 53

getMaxZoom
ArPTZ, 307
ArSonyPTZ, 497
ArVCC4, 537

getMinDouble
ArArg, 111

getMinInt
ArArg, 111

getMinPanSlew
ArVCC4, 536

getMinRange
ArSick, 452

getMinTiltSlew
ArVCC4, 536

getMinZoom
ArPTZ, 307
ArSonyPTZ, 497

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 585

ArVCC4, 537
getMotorPacCount

ArRobot, 368
getMoveDoneDist

ArRobot, 364
getMoving

ArP2Arm, 289
getMSec

ArTime, 518
getMSecSinceLastPacket

ArGripper, 215
getMutex

ArMutex, 282
getName

ArAction, 41
ArArg, 110
ArMode, 260
ArRangeDevice, 319
ArResolver, 332
ArRobot, 369
ArRobotConfigPacketReader,

419
ArSyncTask, 500

getNormalMPacs
ArRobotConfigPacketReader,

420
getNoTimeWarningCB

ArSyncTask, 503
getNoTimeWarningThisCycle

ArRobot, 379
getNumArgs

ArAction, 41
getNumAxes

ArJoyHandler, 233
getNumberOfReadings

ArInterpolation, 226
getNumBlobs

ArACTS 1 2, 94
getNumButtons

ArJoyHandler, 234
getNumFrontBumpers

ArRobot, 368
getNumRearBumpers

ArRobot, 368
getNumSonar

ArRobot, 369

ArRobotParams, 434
getNumToAverage

ArRunningAverage, 437
getOpenMessage

ArDeviceConnection, 139
ArLogFileConnection, 251
ArSerialConnection, 446
ArTcpConnection, 509

getOrigRobotConfig
ArRobot, 397

getPacCount
ArAnalogGyro, 106

getPaddleState
ArGripper, 215

getPan
ArAMPTU, 100
ArDPPTU, 147
ArPTZ, 306
ArSonyPTZ, 497
ArVCC4, 536

getPanAccel
ArDPPTU, 147

getPanSlew
ArDPPTU, 147
ArVCC4, 536

getPerpPoint
ArLineSegment, 243, 244

getPort
ArSerialConnection, 447
ArTcpConnection, 509

getPose
ArArg, 110
ArInterpolation, 227
ArPose, 301
ArRobot, 365
ArSensorReading, 439

getPoseInterpNumReadings
ArRobot, 375

getPoseInterpPosition
ArRobot, 397

getPoseTaken
ArRangeBuffer, 312
ArSensorReading, 439

getPwmMax
ArRobotConfigPacketReader,

419

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

586 INDEX

getRange
ArSensorReading, 442

getRangeConvFactor
ArRobotParams, 433

getRangeDeviceList
ArRobot, 397

getRawEncoderPose
ArRobot, 379

getRawReadings
ArRangeDevice, 325

getReadLength
ArBasePacket, 123

getRealPan
ArPTZ, 306

getRealPanTilt
ArVCC4, 535

getRealTilt
ArPTZ, 306

getRealZoom
ArPTZ, 306

getRealZoomPos
ArVCC4, 535

getRearBumps
ArRobotConfigPacketReader,

421
getRearSonar

ArRobotConfigPacketReader,
419

getReceivedAddress
ArSickPacket, 472

getRequestIOPackets
ArRobotParams, 433

getResetBaud
ArRobotConfigPacketReader,

421
getResolver

ArRobot, 374
getRevCount

ArRobotConfigPacketReader,
419

getRight
ArACTSBlob, 97

getRightVel
ArRobot, 366

getRobot
ArACTS 1 2, 92

ArModule, 276
ArP2Arm, 289
ArRangeDevice, 319

getRobotDiagonal
ArRobot, 366
ArRobotParams, 433

getRobotList
Aria, 222

getRobotName
ArRobot, 365

getRobotParams
ArRobot, 398

getRobotRadius
ArRobot, 366
ArRobotParams, 433

getRobotSubType
ArRobot, 365

getRobotType
ArRobot, 365

getRotAccel
ArActionDesired, 53
ArRobot, 376
ArRobotConfigPacketReader,

420
ArRobotParams, 435

getRotAccelStrength
ArActionDesired, 53

getRotAccelTop
ArRobotConfigPacketReader,

419
getRotDecel

ArActionDesired, 53
ArRobot, 376
ArRobotConfigPacketReader,

420
ArRobotParams, 435

getRotDecelStrength
ArActionDesired, 53

getRotKI
ArRobotConfigPacketReader,

420
getRotKP

ArRobotConfigPacketReader,
420

getRotKV

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 587

ArRobotConfigPacketReader,
420

getRotVel
ArActionDesired, 52
ArRobot, 366

getRotVelMax
ArRobot, 376
ArRobotConfigPacketReader,

420
ArRobotParams, 435

getRotVelStrength
ArActionDesired, 52

getRotVelTop
ArRobotConfigPacketReader,

418
getRunExitListCopy

ArRobot, 379
getRunning

Aria, 224
ArRangeDeviceThreaded, 327
ArThread, 514

getRunningWithLock
ArRangeDeviceThreaded, 327
ArThread, 514

getScalingFactor
ArAnalogGyro, 106

getSec
ArTime, 518

getSendingAddress
ArSickPacket, 473

getSensorDX
ArSensorReading, 440

getSensorDY
ArSensorReading, 440

getSensorPosition
ArSensorReading, 442
ArSick, 452

getSensorPositionTh
ArSick, 452

getSensorPositionX
ArSick, 452

getSensorPositionY
ArSick, 452

getSensorTh
ArSensorReading, 440

getSensorX

ArSensorReading, 440
getSensorY

ArSensorReading, 440
getSerialNumber

ArRobotConfigPacketReader,
418

getSickPacCount
ArSick, 454

getSipCycleTime
ArRobotConfigPacketReader,

419
getSize

ArRangeBuffer, 312
getSocket

ArTcpConnection, 508
getSockName

ArSocket, 486
getSonarCycle

ArRobotConfigPacketReader,
421

getSonarPacCount
ArRobot, 368

getSonarRange
ArRobot, 398

getSonarReading
ArRobot, 398

getSonarTh
ArRobotParams, 434

getSonarX
ArRobotParams, 434

getSonarY
ArRobotParams, 434

getSpeed
ArActionGoto, 61

getSpeeds
ArJoyHandler, 231

getStabilizingTime
ArRobot, 399

getStallCount
ArRobotConfigPacketReader,

420
getStallVal

ArRobotConfigPacketReader,
420

getStallValue
ArRobot, 366

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

588 INDEX

getState
ArSyncTask, 499

getStateReflectionRefreshTime
ArRobot, 399

getStats
ArJoyHandler, 231

getStatus
ArDeviceConnection, 139
ArLogFileConnection, 251
ArP2Arm, 289
ArSerialConnection, 447
ArTcpConnection, 510

getStatusMessage
ArDeviceConnection, 139

getStopIfNoButtonPressed
ArActionJoydrive, 73

getString
ArArg, 111

getStringFromFile
ArUtil, 527

getStringFromRegistry
ArUtil, 528

getSubClassName
ArRobotParams, 433

getSubType
ArRobotConfigPacketReader,

418
getSwitchToBaudRate

ArRobotParams, 433
getSyncTaskRoot

ArRobot, 399
getTemperature

ArAnalogGyro, 106
getTh

ArPose, 300
ArRobot, 365
ArTransform, 520

getThRad
ArPose, 300

getThread
ArThread, 514

getThTaken
ArSensorReading, 440

getTilt
ArAMPTU, 100
ArDPPTU, 147

ArPTZ, 306
ArSonyPTZ, 497
ArVCC4, 536

getTiltAccel
ArDPPTU, 147

getTiltSlew
ArDPPTU, 147
ArVCC4, 536

getTime
ArUtil, 528

getTimeRead
ArDeviceConnection, 140
ArLogFileConnection, 251
ArSerialConnection, 447
ArTcpConnection, 510

getTimeReceived
ArRobotPacket, 423
ArSickPacket, 472

getToGlobalTransform
ArRobot, 399

getToLocalTransform
ArRobot, 400

getTop
ArACTSBlob, 97

getTransAccel
ArActionDesired, 53
ArRobot, 376
ArRobotConfigPacketReader,

420
ArRobotParams, 435

getTransAccelStrength
ArActionDesired, 53

getTransAccelTop
ArRobotConfigPacketReader,

419
getTransDecel

ArActionDesired, 53
ArRobot, 376
ArRobotConfigPacketReader,

420
ArRobotParams, 435

getTransDecelStrength
ArActionDesired, 53

getTransKI
ArRobotConfigPacketReader,

421

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 589

getTransKP
ArRobotConfigPacketReader,

421
getTransKV

ArRobotConfigPacketReader,
421

getTransVelMax
ArRobot, 376
ArRobotConfigPacketReader,

420
ArRobotParams, 435

getTransVelTop
ArRobotConfigPacketReader,

418
getType

ArArg, 112
ArGripper, 216
ArRobotConfigPacketReader,

418
ArSocket, 487

getUnfiltered
ArJoyHandler, 234

getUnitNumber
ArAMPTUPacket, 105

getUseOSCal
ArActionJoydrive, 75
ArJoyHandler, 234

getVel
ArActionDesired, 52
ArRobot, 366

getVel2Divisor
ArRobotParams, 434

getVelConvFactor
ArRobotParams, 433

getVelStrength
ArActionDesired, 52

getWarningTimeCB
ArSyncTask, 503

getWatchdog
ArRobotConfigPacketReader,

419
getX

ArPose, 300
ArRobot, 365
ArSensorReading, 439

getX1

ArLineSegment, 242
getX2

ArLineSegment, 242
getXCG

ArACTSBlob, 97
getXTaken

ArSensorReading, 440
getY

ArPose, 300
ArRobot, 365
ArSensorReading, 439

getY1
ArLineSegment, 242

getY2
ArLineSegment, 242

getYCG
ArACTSBlob, 97

getYTaken
ArSensorReading, 440

getZoom
ArPTZ, 306
ArSonyPTZ, 497
ArVCC4, 536

giveUpKeys
ArActionKeydrive, 78

go
ArRecurrentTask, 330

GRIP CLOSE
ArGripperCommands, 219

GRIP OPEN
ArGripperCommands, 219

GRIP PRESSURE
ArGripperCommands, 219

GRIP STOP
ArGripperCommands, 219

gripClose
ArGripper, 216

gripOpen
ArGripper, 216

GRIPPAC
ArGripper, 214

GRIPPER
ArCommands, 129

GRIPPER DEPLOY
ArGripperCommands, 219

GRIPPER HALT

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

590 INDEX

ArGripperCommands, 219
GRIPPER STORE

ArGripperCommands, 219
gripperDeploy

ArGripper, 216
gripperHalt

ArGripper, 217
GRIPPERPACREQUEST

ArCommands, 129
gripperStore

ArGripper, 217
GRIPPERVAL

ArCommands, 129
gripPressure

ArGripper, 216
gripStop

ArGripper, 216

HALT
ArDPPTUCommands, 149

haltAll
ArDPPTU, 145

haltPan
ArDPPTU, 145

haltPanTilt
ArVCC4, 536

haltTilt
ArDPPTU, 145

haltZoom
ArVCC4, 536

handle
ArSignalHandler, 481

handleGyroPacket
ArAnalogGyro, 106

handlePacket
ArRobot, 379

hasFrontBumpers
ArRobot, 368

hasMoveCommand
ArRobotParams, 433

hasPacketArrived
ArRobotConfigPacketReader,

418
hasPacketBeenRequested

ArRobotConfigPacketReader,
418

hasRangeDevice
ArRobot, 400

hasRearBumpers
ArRobot, 368

hasSettableAccsDecs
ArRobot, 376
ArRobotParams, 435

hasSettableVelMaxes
ArRobot, 376
ArRobotParams, 435

hasTableSensingIR
ArRobot, 367

haveAchievedGoal
ArActionGoto, 61

haveFrontBumpers
ArRobotParams, 434

haveJoystick
ArJoyHandler, 230

haveNewTableSensingIR
ArRobotParams, 434

haveRearBumpers
ArRobotParams, 434

haveSonar
ArRobotParams, 434

haveTableSensingIR
ArRobotParams, 434

haveZAxis
ArJoyHandler, 230

HEAD
ArCommands, 129

HEADER
ArVCC4Commands, 541

help
ArMode, 262
ArModeCamera, 265
ArModeGripper, 267
ArModeSonar, 269
ArModeTeleop, 271
ArModeUnguardedTeleop, 273
ArModeWander, 275

highMotPower
ArDPPTU, 146

home
ArP2Arm, 293

hostAddr
ArSocket, 488

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 591

hostToNetOrder
ArSocket, 488

IMMED
ArDPPTUCommands, 150

immedExec
ArDPPTU, 144

inAddr
ArSocket, 486

incCounter
ArRobot, 377

Increment
ArSick, 457

INCREMENT HALF
ArSick, 457

INCREMENT ONE
ArSick, 457

indepMove
ArDPPTU, 146

InfoPacket
ArP2Arm, 291

INIT
ArAMPTUCommands, 103
ArDPPTUCommands, 149
ArTaskState, 506
ArVCC4Commands, 541

init
ArAMPTU, 99
ArDPPTU, 143
Aria, 224
ArJoyHandler, 230
ArLog, 248
ArModule, 277
ArP2Arm, 293
ArPTZ, 305
ArRobot, 400
ArSocket, 490
ArSonyPTZ, 496
ArThread, 516
ArVCC4, 534

initMon
ArDPPTU, 145

inPort
ArSocket, 486

INT
ArArg, 112

internalConnectHandler
ArSick, 464

internalConnectSim
ArSick, 464

internalEcho
ArNetServer, 285

internalGreeting
ArNetServer, 284

internalHelp
ArNetServer, 285

internalOpen
ArLogFileConnection, 250
ArTcpConnection, 508

internalQuit
ArNetServer, 285

internalShutdown
ArNetServer, 285

intersects
ArLine, 241
ArLineSegment, 244

inToA
ArSocket, 488

INVALID
ArArg, 112

INVALID JOINT
ArP2Arm, 292

INVALID POSITION
ArP2Arm, 292

invalidateReading
ArRangeBuffer, 317

invert
ArACTS 1 2, 94

invoke
ArFunctor, 154
ArFunctor1, 157, 158
ArFunctor1C, 159, 161
ArFunctor2, 163, 164
ArFunctor2C, 166, 168
ArFunctor3, 170, 171
ArFunctor3C, 174, 177, 178
ArFunctorC, 181
ArGlobalFunctor, 184
ArGlobalFunctor1, 186, 187
ArGlobalFunctor2, 189, 191
ArGlobalFunctor3, 193, 196
ArRetFunctor, 334

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

592 INDEX

invokeR
ArGlobalRetFunctor, 198
ArGlobalRetFunctor1, 200,

201
ArGlobalRetFunctor2, 203,

205
ArGlobalRetFunctor3, 207,

209, 210
ArRetFunctor, 334
ArRetFunctor1, 335, 336
ArRetFunctor1C, 337, 339
ArRetFunctor2, 341, 342
ArRetFunctor2C, 344, 346
ArRetFunctor3, 349, 350
ArRetFunctor3C, 353, 356, 357
ArRetFunctorC, 359

IOREQUEST
ArCommands, 129

isActive
ArAction, 40
ArAnalogGyro, 106

isAfter
ArTime, 517

isAllocatingPackets
ArRobotPacketReceiver, 425
ArSickPacketReceiver, 474

isArgBool
ArArgumentBuilder, 115

isArgDouble
ArArgumentBuilder, 115

isArgInt
ArArgumentBuilder, 115

isAt
ArTime, 517

isBefore
ArTime, 517

isConnected
ArACTS 1 2, 92
ArRobot, 400
ArSick, 452

isControllingPower
ArSick, 455

isCycleChained
ArRobot, 375

isDirectMotion
ArRobot, 400

isGood
ArP2Arm, 289

isGripMoving
ArGripper, 217

isHeadingDone
ArRobot, 401

isHolonomic
ArRobotParams, 433

isInitted
ArVCC4, 534

isLaserFlipped
ArSick, 455

isLeftBreakBeamTriggered
ArRobot, 368

isLeftMotorStalled
ArRobot, 366

isLeftTableSensingIRTriggered
ArRobot, 367

isLiftMaxed
ArGripper, 217

isLiftMoving
ArGripper, 217

isMoveDone
ArRobot, 401

isNew
ArSensorReading, 442

isOpen
ArNetServer, 284

isPowered
ArP2Arm, 289

isRightBreakBeamTriggered
ArRobot, 368

isRightMotorStalled
ArRobot, 366

isRightTableSensingIRTriggered
ArRobot, 368

isRunning
ArRobot, 401

isSonarNew
ArRobot, 402

isStabilizing
ArRobot, 377

isTimeStamping
ArDeviceConnection, 140
ArLogFileConnection, 252
ArSerialConnection, 448

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 593

ArTcpConnection, 510
isUsingSim

ArSick, 455

join
ArThread, 514

joinAll
ArThread, 515

JOYDRIVE
ArCommands, 129

joystickInited
ArActionJoydrive, 73

KEY
ArKeyHandler, 237

keyHandlerExit
ArRobot, 378

LAST
ArListPos, 246

LEFT
ArKeyHandler, 237

left
ArActionKeydrive, 78

LIFT CARRY
ArGripperCommands, 220

LIFT DOWN
ArGripperCommands, 219

LIFT STOP
ArGripperCommands, 219

LIFT UP
ArGripperCommands, 219

liftCarry
ArGripper, 217

liftDown
ArGripper, 218

liftStop
ArGripper, 218

liftUp
ArGripper, 218

LIMIT
ArDPPTUCommands, 150

limitEnforce
ArDPPTU, 144

linePointIsInSegment
ArLineSegment, 243

load
ArModuleLoader, 280

LOADPARAM
ArCommands, 129

loadParamFile
ArRobot, 402

LOADWORLD
ArCommands, 129

lock
ArMutex, 283
ArRobot, 376
ArThread, 514

lockDevice
ArRangeDevice, 325
ArRangeDeviceThreaded, 328

log
ArAction, 41
ArACTSBlob, 98
ArArg, 111
ArArgumentBuilder, 114
ArArgumentParser, 116
ArBasePacket, 121
ArLog, 248
ArPose, 300
ArRobotConfigPacketReader,

418
ArSyncTask, 504
ArTime, 518

logActions
ArRobot, 374

logAllTasks
ArRobot, 402

LogLevel
ArLog, 247

logOptions
ArSimpleConnector, 483

logPlain
ArLog, 247

logState
ArGripper, 214

LogType
ArLog, 248

logUserTasks
ArRobot, 402

loopOnce
ArRobot, 402

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

594 INDEX

lower
ArUtil, 529

lowerPanSlew
ArDPPTU, 146

lowerTiltSlew
ArDPPTU, 146

lowMotPower
ArDPPTU, 146

lowStatPower
ArDPPTU, 146

madeConnection
ArRobot, 378
ArSick, 456

makeLinePerp
ArLine, 240

MAX BLOBS
ArACTS 1 2, 93

MAX DATA
ArACTS 1 2, 93

MAX PAN
ArSonyPTZ, 498

MAX PAN ACCEL
ArDPPTU, 148

MAX PAN SLEW
ArDPPTU, 148

MAX STRENGTH
ArActionDesiredChannel, 60

MAX TILT
ArDPPTU, 148
ArSonyPTZ, 498

MAX TILT ACCEL
ArDPPTU, 148

MAX TILT SLEW
ArDPPTU, 148

MAX ZOOM
ArSonyPTZ, 498

maxHostNameLen
ArSocket, 488

merge
ArActionDesired, 55

MIN PAN
ArDPPTU, 148

MIN PAN ACCEL
ArDPPTU, 148

MIN PAN SLEW

ArDPPTU, 148
MIN STRENGTH

ArActionDesiredChannel, 60
MIN TILT

ArDPPTU, 148
MIN TILT ACCEL

ArDPPTU, 148
MIN TILT SLEW

ArDPPTU, 148
MIN ZOOM

ArSonyPTZ, 498
MONITOR

ArDPPTUCommands, 150
MOVE

ArCommands, 128
move

ArRobot, 403
moveStep

ArP2Arm, 293
moveStepTicks

ArP2Arm, 293
moveTo

ArP2Arm, 294
ArRobot, 403

moveToTicks
ArP2Arm, 294

moveVel
ArP2Arm, 295

mSecSince
ArTime, 517

mSecTo
ArTime, 517

myPan
ArDPPTU, 147

myRobot
ArModule, 276

myRunning
ArThread, 515

myX1
ArLineSegment, 243

myX2
ArLineSegment, 243

myY1
ArLineSegment, 243

myY2
ArLineSegment, 243

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 595

nameSignal
ArSignalHandler, 478

netToHostOrder
ArSocket, 488

newData
ArSensorReading, 442

newEndPoints
ArLineSegment, 242

newParameters
ArLine, 240

newParametersFromEndpoints
ArLine, 240

NO ARM FOUND
ArP2Arm, 291

NO STRENGTH
ArActionDesiredChannel, 60

NOGRIPPER
ArGripper, 214

None
ArLog, 248

Normal
ArLog, 247

NOT CONNECTED
ArP2Arm, 292

NOT INITED
ArP2Arm, 291

NUM CHANNELS
ArACTS 1 2, 93

numFrontBumpers
ArRobotParams, 434

NumJoints
ArP2Arm, 290

numRearBumpers
ArRobotParams, 434

OFFSET
ArDPPTUCommands, 150

offStatPower
ArDPPTU, 145

OPEN
ArCommands, 128

Open
ArLogFileConnection, 250
ArSerialConnection, 446
ArTcpConnection, 508

open

ArLogFileConnection, 252
ArNetServer, 285
ArSerialConnection, 448
ArSocket, 485
ArTcpConnection, 510

OPEN ALREADY OPEN
ArSerialConnection, 446

OPEN BAD HOST
ArTcpConnection, 508

OPEN CON REFUSED
ArTcpConnection, 509

OPEN COULD NOT OPEN -
PORT

ArSerialConnection, 446
OPEN COULD NOT SET BAUD

ArSerialConnection, 446
OPEN COULD NOT SET UP -

PORT
ArSerialConnection, 446

OPEN FILE NOT FOUND
ArLogFileConnection, 250

OPEN INVALID BAUD RATE
ArSerialConnection, 446

OPEN NET FAIL
ArTcpConnection, 508

OPEN NO ROUTE
ArTcpConnection, 509

OPEN NOT A LOG FILE
ArLogFileConnection, 250

openPort
ArACTS 1 2, 94

openSimple
ArDeviceConnection, 138
ArLogFileConnection, 249
ArSerialConnection, 444
ArTcpConnection, 507

ourInitialized
ArSocket, 488

P2ArmJoint, 543
packetHandler

ArGripper, 214
ArIrrfDevice, 229
ArPTZ, 309
ArRobot, 403

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

596 INDEX

ArRobotConfigPacketReader,
421

ArVCC4, 538
PacketType

ArP2Arm, 291
PAN

ArDPPTUCommands, 150
pan

ArAMPTU, 99
ArDPPTU, 144
ArPTZ, 305
ArSonyPTZ, 496
ArVCC4, 534

panAccel
ArDPPTU, 146

panRel
ArAMPTU, 99
ArDPPTU, 144
ArPTZ, 305
ArSonyPTZ, 496
ArVCC4, 534

PANSLEW
ArAMPTUCommands, 103
ArVCC4Commands, 541

panSlew
ArAMPTU, 100
ArDPPTU, 147
ArVCC4, 536

panSlewRel
ArDPPTU, 147

PANTILT
ArAMPTUCommands, 102
ArVCC4Commands, 541

panTilt
ArAMPTU, 99
ArDPPTU, 144
ArPTZ, 305
ArSonyPTZ, 496
ArVCC4, 535

PANTILTDCCW
ArAMPTUCommands, 102

PANTILTDCW
ArAMPTUCommands, 102

panTiltRel
ArAMPTU, 99
ArDPPTU, 144

ArPTZ, 305
ArSonyPTZ, 496
ArVCC4, 535

PANTILTREQ
ArVCC4Commands, 541

PANTILTUCCW
ArAMPTUCommands, 102

PANTILTUCW
ArAMPTUCommands, 102

park
ArP2Arm, 288

parseArgs
ArSimpleConnector, 483

parseArgument
ArConfig, 134

parseCommandOnSocket
ArNetServer, 285

parseFile
ArConfig, 134
ArConfigGroup, 136
ArFileParser, 152

PAUSE
ArAMPTUCommands, 102

pause
ArAMPTU, 100

PLAYLIST
ArCommands, 130

pointRotate
ArMath, 254

POLLING
ArCommands, 128

Pos
ArListPos, 246

POSE
ArArg, 112

POWER
ArVCC4Commands, 541

powerOff
ArP2Arm, 295

powerOn
ArP2Arm, 296

preparePacket
ArVCC4, 536

printHex
ArBasePacket, 121

processEncoderPacket

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 597

ArRobot, 378
processFile

ArConfig, 135
processIOPacket

ArRobot, 378
processMotorPacket

ArRobot, 378
processNewSonar

ArRobot, 378
processPacket

ArSick, 456
processParamFile

ArRobot, 379
processReadings

ArSonarDevice, 492
PTUPOS

ArCommands, 129
PULSE

ArCommands, 128
PURGE

ArAMPTUCommands, 102
purge

ArAMPTU, 100

QUERYTYPE
ArGripper, 214

radToDeg
ArMath, 257

random
ArMath, 255

read
ArDeviceConnection, 140
ArLogFileConnection, 252
ArSerialConnection, 448
ArSocket, 490
ArTcpConnection, 511

readPacket
ArPTZ, 309
ArVCC4, 538

readString
ArSocket, 490

receiveBlobInfo
ArACTS 1 2, 95

receivePacket
ArRobotPacketReceiver, 426

ArSickPacketReceiver, 475
recvFrom

ArSocket, 486
redoReading

ArRangeBuffer, 317
REGKEY

ArUtil, 526
REGKEY CLASSES ROOT

ArUtil, 526
REGKEY CURRENT CONFIG

ArUtil, 526
REGKEY CURRENT USER

ArUtil, 526
REGKEY LOCAL MACHINE

ArUtil, 526
REGKEY USERS

ArUtil, 526
regMotPower

ArDPPTU, 146
regStatPower

ArDPPTU, 145
reload

ArModuleLoader, 281
reloadFile

ArConfigGroup, 136
RELPANCCW

ArAMPTUCommands, 102
RELPANCW

ArAMPTUCommands, 102
RELTILTD

ArAMPTUCommands, 102
RELTILTU

ArAMPTUCommands, 102
remAction

ArActionGroup, 64
ArRobot, 404

remCommand
ArNetServer, 286

remConfig
ArConfigGroup, 136

remConnectCB
ArRobot, 404
ArSick, 464

remDataCB
ArSick, 464

remDisconnectNormallyCB

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

598 INDEX

ArRobot, 404
ArSick, 465

remDisconnectOnErrorCB
ArRobot, 405
ArSick, 465

remErrorCB
ArVCC4, 535

remFailedConnectCB
ArRobot, 405
ArSick, 465

remHandler
ArFileParser, 152

remKeyHandler
ArKeyHandler, 238

removeActions
ArActionGroup, 63

removeArg
ArArgumentBuilder, 115

remPacketHandler
ArRobot, 405

remRangeDevice
ArRobot, 405, 406

remRunExitCB
ArRobot, 406

remSensorInterpTask
ArRobot, 406

remStabilizingCB
ArRobot, 406

remUserTask
ArRobot, 407

requestInfo
ArP2Arm, 296

requestInit
ArP2Arm, 296

requestPacket
ArACTS 1 2, 95
ArRobotConfigPacketReader,

418
requestQuit

ArACTS 1 2, 95
requestStatus

ArAMPTU, 100
ArP2Arm, 297

RESET
ArDPPTUCommands, 150

reset

ArActionDesired, 52
ArInterpolation, 226
ArRangeBuffer, 313
ArRecurrentTask, 330

resetAll
ArDPPTU, 144

resetCalib
ArDPPTU, 143

resetPan
ArDPPTU, 144

resetRead
ArBasePacket, 126
ArSickPacket, 473

resetSensorPosition
ArSensorReading, 443

RESETSIMTOORIGIN
ArCommands, 130

resetTilt
ArDPPTU, 144

resolve
ArResolver, 332

RESP
ArAMPTUCommands, 103

RESPONSE
ArVCC4Commands, 541

restore
ArKeyHandler, 236

restoreSet
ArDPPTU, 144

RESUME
ArTaskState, 506

resume
ArAMPTU, 100

RIGHT
ArKeyHandler, 237

right
ArActionKeydrive, 78

ROBOT NOT SETUP
ArP2Arm, 291

robotConnectCallback
ArSick, 456

robotLocker
ArRobot, 407

robotPacketHandler
ArPTZ, 309

robotTask

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 599

ArSickLogger, 468
robotUnlocker

ArRobot, 407
ROTATE

ArCommands, 129
roundInt

ArMath, 257
run

ArASyncTask, 119
ArRangeDeviceThreaded, 327
ArRobot, 407
ArSyncTask, 504

runAsync
ArASyncTask, 119
ArRangeDeviceThreaded, 327
ArRobot, 408

runInThisThread
ArASyncTask, 120

runOnce
ArNetServer, 284
ArSick, 456

runOnRobot
ArSick, 465

runThread
ArASyncTask, 120
ArFunctorASyncTask, 180
ArRangeDeviceThreaded, 327
ArRecurrentTask, 331
ArSick, 455
ArSignalHandler, 481

RVEL
ArCommands, 129

save
ArRobotParams, 435

saveSet
ArDPPTU, 144

SAY
ArCommands, 129

secSince
ArTime, 517

secTo
ArTime, 517

self
ArThread, 516

sendPacket

ArPTZ, 310
sendTo

ArSocket, 486
sendToAllClients

ArNetServer, 286
sendToAllClientsPlain

ArNetServer, 284
sensorInterpCallback

ArSick, 455
sensorInterpHandler

ArPTZ, 307
SETA

ArCommands, 128
setAbsoluteMaxRotVel

ArRobot, 408
setAbsoluteMaxTransVel

ArRobot, 408
setArea

ArACTSBlob, 97
setArgWithFunctor

ArArg, 110
setAutoParkTimer

ArP2Arm, 297
setAuxPort

ArPTZ, 310
setBaseDirectory

ArConfig, 134
ArConfigGroup, 136
ArFileParser, 152

setBatteryVoltageAverageOfNum
ArRobot, 369

setBaud
ArSerialConnection, 449

setBool
ArArg, 110

setBottom
ArACTSBlob, 98

setBroadcast
ArSocket, 486

setBuf
ArBasePacket, 123

setCloseDist
ArActionGoto, 61

setConnectionCycleMultiplier
ArRobot, 409

setConnectionTimeoutTime

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

600 INDEX

ArRobot, 409
ArSick, 466

setCumulativeBufferSize
ArRangeDevice, 325

setCumulativeMaxRange
ArIrrfDevice, 228
ArSonarDevice, 492

setCurrentBufferSize
ArRangeDevice, 325

setCycleChained
ArRobot, 374

setCycleTime
ArRobot, 409

setCycleWarningTime
ArRobot, 409

setDeadReconPose
ArRobot, 410

setDegDiff
ArSickLogger, 468

setDeltaHeading
ArActionDesired, 55
ArRobot, 410

setDeviceConnection
ArPTZ, 310
ArRobot, 410
ArRobotPacketReceiver, 425
ArRobotPacketSender, 428
ArSick, 452
ArSickPacketReceiver, 474

setDirectMotionPrecedenceTime
ArRobot, 411

setDirectory
Aria, 225

setDistDiff
ArSickLogger, 468

setDoClose
ArSocket, 487

setDouble
ArArg, 110

setEcho
ArSocket, 487

setEncoderCorrectionCallback
ArRobot, 411

setEncoderTransform
ArRobot, 411, 412

setExtraString

ArArgumentBuilder, 114
setFilterCleanCumulativeInterval

ArSick, 466
setFilterCumulativeCleanDist

ArSick, 466
setFilterCumulativeInsertMaxDist

ArSick, 466
setFilterCumulativeMaxAge

ArSick, 467
setFilterCumulativeMaxDist

ArSick, 467
setFilterCumulativeNearDist

ArSick, 467
setFilterModel

ArAnalogGyro, 108
setFilterNearDist

ArSick, 467
setFullString

ArArgumentBuilder, 114
setGoal

ArActionGoto, 61
setGripperParkTimer

ArP2Arm, 297
setHardwareControl

ArSerialConnection, 449
setHeaderLength

ArBasePacket, 123
setHeading

ArActionDesired, 55
ArRobot, 412

setHeadingDoneDiff
ArRobot, 364

setID
ArRobotPacket, 423

setIncrements
ArActionKeydrive, 77

setInt
ArArg, 110

setJoyHandler
Aria, 222

setKeyHandler
Aria, 222

setLeft
ArACTSBlob, 98

setLength
ArBasePacket, 123

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 601

setLinger
ArSocket, 486

setMaxNegVel
ArActionDesired, 56

setMaxRange
ArRangeDevice, 321

setMaxRotVel
ArActionDesired, 56

setMaxVel
ArActionDesired, 56

setMinRange
ArSick, 452

setMoveDoneDist
ArRobot, 364

setMSec
ArTime, 518

setName
ArRobot, 369

setNextArgument
ArAction, 41

setNonBlock
ArSocket, 487

setNoTimeWarningCB
ArSyncTask, 504

setNoTimeWarningThisCycle
ArRobot, 379

setNumberOfReadings
ArInterpolation, 226

setNumToAverage
ArRunningAverage, 437

SETO
ArCommands, 128

setP1
ArFunctor1C, 161
ArFunctor2C, 168
ArFunctor3C, 178
ArGlobalFunctor1, 187
ArGlobalFunctor2, 191
ArGlobalFunctor3, 196
ArGlobalRetFunctor1, 202
ArGlobalRetFunctor2, 205
ArGlobalRetFunctor3, 210
ArRetFunctor1C, 339
ArRetFunctor2C, 347
ArRetFunctor3C, 357

setP2

ArFunctor2C, 168
ArFunctor3C, 178
ArGlobalFunctor2, 191
ArGlobalFunctor3, 197
ArGlobalRetFunctor2, 205
ArGlobalRetFunctor3, 210
ArRetFunctor2C, 347
ArRetFunctor3C, 357

setP3
ArFunctor3C, 178
ArGlobalFunctor3, 197
ArGlobalRetFunctor3, 211
ArRetFunctor3C, 357

setPacketCB
ArP2Arm, 289

setPort
ArSerialConnection, 449

setPose
ArArg, 110
ArPose, 302

setPoseInterpNumReadings
ArRobot, 375

setPoseTaken
ArRangeBuffer, 312

SETRA
ArCommands, 129

SETRANGE
ArVCC4Commands, 541

setReadLength
ArBasePacket, 123

setResolver
ArRobot, 374

setReuseAddress
ArSocket, 487

setRight
ArACTSBlob, 98

setRobot
ArAction, 41
ArActionKeydrive, 77
ArACTS 1 2, 92
ArIrrfDevice, 228
ArModule, 276
ArP2Arm, 287
ArRangeDevice, 319
ArSick, 456
ArSonarDevice, 492

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

602 INDEX

setRotAccel
ArActionDesired, 57
ArRobot, 376

setRotDecel
ArActionDesired, 57
ArRobot, 376

setRotVel
ArActionDesired, 57
ArActionInput, 71
ArRobot, 412

setRotVelMax
ArRobot, 375

setRunning
ArThread, 514

SETRV
ArCommands, 129

setScalingFactor
ArAnalogGyro, 106

setSec
ArTime, 518

setSendingAddress
ArSickPacket, 473

setSensorPosition
ArSick, 451, 452

SETSIMORIGINTH
ArCommands, 130

SETSIMORIGINX
ArCommands, 130

SETSIMORIGINY
ArCommands, 130

setSize
ArRangeBuffer, 318

setSocket
ArTcpConnection, 511

setSpeed
ArActionGoto, 61

setSpeeds
ArActionJoydrive, 73
ArActionKeydrive, 77
ArJoyHandler, 230

setStabilizingTime
ArRobot, 412

setState
ArSyncTask, 499

setStateReflectionRefreshTime
ArRobot, 413

setStats
ArJoyHandler, 231

setStatus
ArTcpConnection, 508

setStopIfNoButtonPressed
ArActionJoydrive, 73

setStoppedCB
ArP2Arm, 289

setString
ArArg, 110

setTh
ArPose, 299

setThis
ArFunctor1C, 161, 162
ArFunctor2C, 169
ArFunctor3C, 179
ArFunctorC, 182
ArRetFunctor1C, 340
ArRetFunctor2C, 347
ArRetFunctor3C, 358
ArRetFunctorC, 360

setThRad
ArPose, 299

setThrottleParams
ArActionJoydrive, 73

setTimeReceived
ArRobotPacket, 423
ArSickPacket, 472

setToNow
ArTime, 517

setTop
ArACTSBlob, 98

setTransAccel
ArActionDesired, 57
ArRobot, 375

setTransDecel
ArActionDesired, 58
ArRobot, 375

setTransform
ArTransform, 521

setTransVelMax
ArRobot, 375

setType
ArGripper, 218

setUnitNumber
ArAMPTUPacket, 105

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 603

setupLaser
ArSimpleConnector, 484

setUpPacketHandlers
ArRobot, 378

setupRobot
ArSimpleConnector, 484

setUpSyncList
ArRobot, 378

setUseOSCal
ArActionJoydrive, 75
ArJoyHandler, 234

SETV
ArCommands, 128

setVel
ArActionDesired, 58
ArActionInput, 71
ArRobot, 413

setVel2
ArRobot, 413

setWarningTimeCB
ArSyncTask, 504

setX
ArPose, 299

setXCG
ArACTSBlob, 97

setY
ArPose, 299

setYCG
ArACTSBlob, 97

shutdown
Aria, 225
ArSocket, 490

SIGHANDLE NONE
Aria, 222

SIGHANDLE SINGLE
Aria, 222

SIGHANDLE THREAD
Aria, 222

SigHandleMethod
Aria, 222

signal
ArCondition, 131

signalHandlerCB
Aria, 222

simPacketHandler
ArSick, 455

sin
ArMath, 257

sizeFile
ArUtil, 529

slaveExec
ArDPPTU, 145

sleep
ArUtil, 529

SLEWREQ
ArVCC4Commands, 541

sockAddrIn
ArSocket, 486

sockAddrLen
ArSocket, 488

SONAR
ArCommands, 129

SOUND
ArCommands, 130

SOUNDTOG
ArCommands, 130

SPACE
ArKeyHandler, 237

space
ArActionKeydrive, 78

SPEED
ArDPPTUCommands, 150

splitString
ArUtil, 529

squaredDistanceBetween
ArMath, 258

squaredFindDistanceTo
ArPose, 302

stabilizingCallback
ArAnalogGyro, 107

startAverage
ArActionDesired, 58

startCal
ArJoyHandler, 235

startStabilization
ArRobot, 379

State
ArP2Arm, 291
ArSick, 457
ArTaskState, 506

STATE CHANGE BAUD
ArSick, 458

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

604 INDEX

STATE CONFIGURE
ArSick, 458

STATE CONNECTED
ArSick, 458

STATE INIT
ArSick, 458

STATE INSTALL MODE
ArSick, 458

STATE NONE
ArSick, 458

STATE SET MODE
ArSick, 458

STATE START READINGS
ArSick, 458

STATE WAIT FOR -
CONFIGURE ACK

ArSick, 458
STATE WAIT FOR INSTALL -

MODE ACK
ArSick, 458

STATE WAIT FOR POWER ON
ArSick, 458

STATE WAIT FOR SET MODE -
ACK

ArSick, 458
STATE WAIT FOR START ACK

ArSick, 458
stateReflector

ArRobot, 414
STATUS

ArAMPTUCommands, 102
Status

ArDeviceConnection, 138
ArModuleLoader, 280
ArMutex, 283
ArThread, 516

STATUS ALREADY -
DETATCHED

ArThread, 516
STATUS ALREADY LOADED

ArModuleLoader, 280
STATUS ALREADY LOCKED

ArMutex, 283
STATUS CLOSED ERROR

ArDeviceConnection, 138
STATUS CLOSED NORMALLY

ArDeviceConnection, 138
STATUS EXIT FAILED

ArModuleLoader, 280
STATUS FAILED

ArCondition, 132
ArMutex, 283
ArThread, 516

STATUS FAILED DESTROY
ArCondition, 132

STATUS FAILED INIT
ArCondition, 132
ArMutex, 283

STATUS FAILED OPEN
ArModuleLoader, 280

STATUS INIT FAILED
ArModuleLoader, 280

STATUS INVALID
ArModuleLoader, 280
ArThread, 516

STATUS JOIN SELF
ArThread, 516

STATUS MUTEX FAILED
ArCondition, 132

STATUS MUTEX FAILED INIT
ArCondition, 132

STATUS NEVER OPENED
ArDeviceConnection, 138

STATUS NO SUCH THREAD
ArThread, 516

STATUS NORESOURCE
ArThread, 516

STATUS NOT FOUND
ArModuleLoader, 280

STATUS OPEN
ArDeviceConnection, 138

STATUS OPEN FAILED
ArDeviceConnection, 138

STATUS SUCCESS
ArModuleLoader, 280

STATUS WAIT INTR
ArCondition, 132

STATUS WAIT TIMEDOUT
ArCondition, 132

StatusContinuous
ArP2Arm, 292

StatusOff

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 605

ArP2Arm, 292
StatusPacket

ArP2Arm, 291
StatusSingle

ArP2Arm, 292
StatusType

ArP2Arm, 292
StdErr

ArLog, 248
StdOut

ArLog, 248
STEP

ArCommands, 129
STOP

ArCommands, 129
ArVCC4Commands, 541

stop
ArP2Arm, 297
ArRobot, 414

stopAll
ArThread, 515

stopRunning
ArASyncTask, 119
ArRangeDeviceThreaded, 327
ArRobot, 414
ArThread, 513

strcasecmp
ArUtil, 530, 531

strcmp
ArUtil, 531, 532

STRING
ArArg, 112

stripDir
ArUtil, 533

stripFile
ArUtil, 533

strNToBuf
ArBasePacket, 126

strToBuf
ArBasePacket, 126

strToBufPadded
ArBasePacket, 126

subAngle
ArMath, 258

SUCCESS
ArP2Arm, 291

ArTaskState, 506
SUSPEND

ArTaskState, 506
switchState

ArSick, 457

TAB
ArKeyHandler, 237

takeKeys
ArActionKeydrive, 78

takeReading
ArSickLogger, 468

task
ArRecurrentTask, 331

TCM2
ArCommands, 129

Terse
ArLog, 247

TILT
ArDPPTUCommands, 150

tilt
ArAMPTU, 99
ArDPPTU, 144
ArPTZ, 305
ArSonyPTZ, 496
ArVCC4, 534

tiltAccel
ArDPPTU, 146

tiltRel
ArAMPTU, 99
ArDPPTU, 144
ArPTZ, 305
ArSonyPTZ, 496
ArVCC4, 535

TILTSLEW
ArAMPTUCommands, 103
ArVCC4Commands, 541

tiltSlew
ArAMPTU, 100
ArDPPTU, 147
ArVCC4, 536

tiltSlewRel
ArDPPTU, 147

timedWait
ArCondition, 131

transfer

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

606 INDEX

ArSocket, 491
tryingToConnect

ArSick, 452
tryLock

ArMutex, 283
ArRobot, 377
ArThread, 514

tryLockDevice
ArRangeDevice, 326
ArRangeDeviceThreaded, 328

TTY2
ArCommands, 129

Type
ArArg, 112
ArGripper, 214

typedef
ArCondition, 132

UByte
ArTypes, 522

UByte2
ArTypes, 522

uByte2ToBuf
ArBasePacket, 122

UByte4
ArTypes, 522

uByte4ToBuf
ArBasePacket, 122

uByteToBuf
ArBasePacket, 122
ArSonyPacket, 494

unblock
ArSignalHandler, 481

unblockAll
ArSignalHandler, 482

unhandle
ArSignalHandler, 482

uninit
Aria, 225
ArP2Arm, 298

unlock
ArMutex, 282
ArRobot, 377
ArThread, 514

unlockDevice
ArRangeDevice, 326

ArRangeDeviceThreaded, 328
UP

ArKeyHandler, 237
up

ArActionKeydrive, 78
update

ArSectors, 438
UPPER

ArDPPTUCommands, 150
upperPanSlew

ArDPPTU, 146
upperTiltSlew

ArDPPTU, 146
USER START

ArTaskState, 506
USERIO

ArGripper, 214
userTask

ArMode, 261
ArModeCamera, 264
ArModeGripper, 266
ArModeSonar, 268
ArModeTeleop, 270
ArModeUnguardedTeleop, 272
ArModeWander, 274

VEL
ArCommands, 129

VEL2
ArCommands, 129

velMove
ArDPPTU, 146

VELOCITY
ArDPPTUCommands, 150

Verbose
ArLog, 248

verifyCheckSum
ArRobotPacket, 423

verifyCRC
ArSickPacket, 471

wait
ArCondition, 131

WAIT CONNECTED
ArRobot, 380

WAIT FAIL

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

INDEX 607

ArRobot, 380
WAIT FAILED CONN

ArRobot, 380
WAIT INTR

ArRobot, 380
WAIT RUN EXIT

ArRobot, 380
WAIT TIMEDOUT

ArRobot, 380
waitForConnect

ArRobot, 415
waitForConnectOrConnFail

ArRobot, 415
waitForRunExit

ArRobot, 416
WaitState

ArRobot, 380
wakeAllConnOrFailWaitingThreads

ArRobot, 416
wakeAllConnWaitingThreads

ArRobot, 416
wakeAllRunExitWaitingThreads

ArRobot, 416
wakeAllWaitingThreads

ArRobot, 417
wasError

ArVCC4, 537
write

ArDeviceConnection, 141
ArLogFileConnection, 253
ArSerialConnection, 449
ArSocket, 491
ArTcpConnection, 511

writeFile
ArConfig, 135
ArConfigGroup, 136

writePacket
ArDeviceConnection, 141

writeString
ArSocket, 487

writeStringPlain
ArSocket, 487

yieldProcessor
ArThread, 515

ZOOM
ArAMPTUCommands, 102
ArVCC4Commands, 541

zoom
ArPTZ, 306
ArSonyPTZ, 497
ArVCC4, 535

zoomRel
ArPTZ, 306
ArSonyPTZ, 497

ZOOMSTOP
ArVCC4Commands, 541

Generated at Sun Sep 7 18:00:32 2003 for Aria by Doxygen written by Dimitri van Heesch c© 1997-2001

