

UNIVERSITÀ DI BRESCIA FACOLTÀ DI INGEGNERIA Dipartimento di Elettronica per l'Automazione

Laboratorio di Robotica Avanzata Advanced Robotics Laboratory

Corso di Robotica (Prof. Riccardo Cassinis)

WebCamUSB

Elaborato di esame di:

Daniele Cisamolo, Giovanni Giovannozzi, Alberto Nobile e Gianluca Rossi

Consegnato il:

01 luglio 2005

Sommario

Questo documento è stato scritto per spiegare come fare, su una macchina Linux, a collegare una telecamera USB, e a rendere le immagini acquisite disponibili ad altri programmi

1. Introduzione

Le webcam, sotto linux, vengono gestite da un modulo del kernel che si chiama Video For Linux abbreviato con v4l[1]. Questo modulo acquisisce il flusso di immagini provenienti dalla webcam e le rende disponibili attraverso delle API in un dispositivo a caratteri, che di solito corrisponde al file /dev/video0. Per il corretto funzionamento della telecamera devono inoltre essere caricati nel kernel i moduli specifici del dispositivo utilizzato.

2. Il problema affrontato

Il problema affrontato riguardava la corretta configurazione di una telecamera USB. In modo particolare sono state prese in considerazioni due telecamere della Philips:

- Philips ToUcam Pro PCVC840K/00: Webcam a disposizione del laboratorio di robotica. Necessita dei driver PWC per il suo funzionamento
- Philips ToUcam XS: Webcam di prova usata per effettuare dei test. Necessita dei driver OV511, ma può funzionare anche con i driver PWC, dipende dal kernel a disposizione

3. La soluzione adottata

Per il corretto funzionamento del dispositivo sono stati scaricati i sorgenti del kernel, i sorgenti dei driver per le webcam ed infine è stata attuata la configurazione riassunta nel prossimo paragrafo.

4. Modalità operative

4.1. Componenti necessari

In linea generale, prima di procedere all'installazione dei driver e dei moduli relativi è necessario:

- Assicurarsi di avere un compilatore del linguaggio C (gcc può essere una scelta valida)
- Assicurarsi di avere i sorgenti del kernel e che essi corrispondano a quello attualmente in uso
- Assicurarsi che il kernel supporti l'USB (per la configurazione del kernel cfr. 4.3) In modo particolare devono essere abilitate le opzioni:
 - USB Philips Cameras
 - USB Philips Camera Decompressor
 - USB OV511 Camera support
- Assicurarsi che il kernel supporti Video For Linux (v4l)
 - In modo particolare deve essere abilitata l'opzione:
 - BT848Video For Linux

4.2. Modalità di installazione

Innanzitutto bisogna procurarsi i sorgenti del kernel. In alcune distribuzioni esistono dei pacchetti già pronti che possono essere recuperati dal sito della distribuzione o dai cd di installazione. Nel caso della Mandrake 10.1[2], installata nei calcolatori del laboratorio, il pacchetto con i sorgenti si chiama kernel-source-2.6-2.6.8.1-12mdk ed è disponibile nei cd di installazione.

Altrimenti è possibile scaricare un archivio contenente il kernel vanilla (cioè kernel originale presente sul sito ufficiale dei kernel di linux[3], a cui non è stata applicata alcuna patch), utilizzato dalla distribuzione Slackware[4], la seconda distribuzione usata per le prove di installazione della webcam. Una volta ottenuti i sorgenti del kernel si può procedere all'installazione. Nel caso dei pacchetti è sufficiente utilizzare il gestore dei pacchetti della distribuzione considerata. Nel caso della Mandrake

cd "percorso in cui si trova il pacchetto"
su
urpmi kernel-source-2.6-2.6.8.1-12mdk

occorre acquisire i permessi di root e digitare dal prompt dei comandi

Nel caso dell'archivio di un vanilla kernel è necessario decomprimere il file nella directory /usr/src/ digitando i comandi

cd /usr/src # su # tar xzvf /percorso/dell/archivio.tar.gz

Questo ultimo comando va bene se l'archivio è compresso con l'algoritmo zip (estensione dell'archivio .tar.gz), altrimenti utilizzare l'opzione j al posto di z se l'archivio è compresso con l'algoritmo bzip.

A questo punto i sorgenti del kernel si trovano nella directory /usr/src/linux-versioneKernel (in altre distribuzioni potrebbe essere diverso). Nella maggior parte delle distribuzioni, come quelle considerate, è opportuno creare il soft link /usr/src/linux che punta alla directory dei sorgenti del kernel col comando:

ln -s /usr/src/linux-versioneKernel /usr/src/linux

4.3. Modalità di configurazione

Per la personalizzazione del kernel occorre spostarsi nella directory dei sorgenti e lanciare l'utilità di configurazione.

cd /usr/src/linux # su # make menuconfig

A questo punto si aprirà una schermata in cui è possibile selezionare le opzioni elencate al punto 4.1 attraverso dei menu.

Dopo aver abilitato le opzioni e salvato la configurazione si può procedere alla compilazione vera e propria con i comandi:

make bzImage
make modules
make modules_install

Nel caso del kernel 2.4 il procedimento è analogo, basta aggiungere un *make dep* prima dei comandi sopra elencati.

Una volta terminato il processo di compilazione occorre copiare l'immagine del kernel appena creato dalla directory /usr/src/linux/arch/i386/boot/bzImage nella directory /boot. Per avere un'esaustiva panoramica sulla configurazione del kernel vedere il Kernel HOWTO[5].

Infine basta aggiornare il proprio boot loader e riavviare la macchina; per avere maggiori informazioni per eseguire tale procedura vedere Boot HOWTO[6].

Per l'installazione dei moduli è necessario eseguire le seguenti istruzioni.

Installazione modulo PWC

- Scaricare dal sito del manutentore[7] la versione corretta del file contenente i sorgenti dei driver In questo caso il file scaricato è pwc-10.0.7a.tar.bz2
- Decomprimere il file col comando
 - # tar xjvf pwc-10.0.7a.tar.bz2
- Compilare il modulo
 - # cd pwc-10.0.7a # make
- Acquisire i privilegi di root
 - # su
- Nel caso siano già state installate vecchie versioni del modulo procedere alla loro eliminazione. A tal proposito è possibile identificare i moduli da cancellare col comando
 - # find /lib/modules/`uname -r`/ -name "pwc*.ko*" e cancellarli col comando
 - # rm <nome del file.ko>
- Installare i nuovi moduli # make install
- Scaricare i vecchi moduli
 - # modprobe -r pwc
 # modprobe -r pwcx
 - # modprobe -r pwc: # modprobe pwc
 - oppure riavviare la macchina

Se non si vuole procedere in questo modo, è sempre possibile adottare un procedimento più classico che consiste nell' applicare delle patch al kernel.

- In primo luogo bisogna scaricare la patch appropriata che corrisponde al proprio kernel
- Avere a disposizione i sorgenti del kernel oppure scaricarli
- Portarsi nella directory dove si trovano i sorgenti del kernel /usr/src/linux
- Applicare la patch al kernel con il seguente comando:
 - # patch -p1 -s < <percorso della patch>
- Compilare il kernel come precedentemente descritto

Installazione modulo OV511

- Scaricare l'ultima versione dei driver presso il sito dello sviluppatore[8]. In questo caso è stato scaricato il file *ov511-1.58.tar.gz*
- Decomprimere il file col comando tar xzvf ov511-1.58.tar.gz
- Compilare il modulo
 - # cd ov511-1.58 # make
- Installare i nuovi moduli con
 - # make install
- Caricare il modulo col comando # modprobe ov511
- Caricare il modulo relativo al sensore della telecamera # modprobe ovcamchip

Assicurarsi che esista il device /dev/video0 tramite il comando

ls /dev/video0
Se non esiste, crearlo col comando
mknod /dev/video0 c 81 0
Alcune applicazioni, come Xawtv[9] e Camstream[10] cercano la presenza di questo device per il loro funzionamento.

4.4. Avvertenze

Test della telecamera

Il test della telecamera è stato fatto con entrambi i software menzionati sopra: ad essi possono essere passati diversi parametri ma, se tutto è andato a buon fine, basta semplicemente eseguirli da linea di comando per ottenere già ottimi risultati.

Tipo di immagini acquisibili da una webcam

Il tipo di immagini acquisibili da una webcam è nel formato YV12. È quindi necessaria un'opportuna conversione nel caso si voglia utilizzare un formato diverso.

5. Conclusioni e sviluppi futuri

Al termine del lavoro svolto si è potuto constatare il corretto funzionamento della webcam. Qualunque software compatibile con video for linux può essere utilizzato per funzionare con la webcam presente in laboratorio.

Bibliografia

- [1] Sito di V41 <u>http://www.exploits.org/v41/</u>
- [2] Sito di Mandrake <u>http://www.mandriva.com/</u>
- [3] Sito dei sorgenti del kernel di linux <u>http://www.kernel.org</u>
- [4] Sito di Slackware <u>http://www.slackware.org</u>
- [5] Kernel HOWTO <u>http://www.tldp.org/HOWTO/Kernel-HOWTO.html</u>
- [6] Boot HOWTO <u>http://www.tldp.org/HOWTO/Bootdisk-HOWTO/</u>
- [7] Sito dello sviluppatore pwc <u>http://www.saillard.org/linux/pwc/</u>
- [8] Sito dello sviluppatore ov511 <u>http://alpha.dyndns.org/ov511/</u>
- [9] Sito ufficiale del progetto Xawtv <u>http://linux.bytesex.org/xawtv/</u>
- [10] Sito ufficiale del progetto Camstream http://www.smcc.demon.nl/camstream/

Indice

SOMMARIO1		
1. 1.1.	INTRODUZIONE Modalità di scrittura	.1 1
2.	IL PROBLEMA AFFRONTATO	.1
3.	LA SOLUZIONE ADOTTATA	.1
4. 4.1. 4.2. 4.3. 4.4.	MODALITÀ OPERATIVE Componenti necessari Modalità di installazione Modalità di configurazione Avvertenze	.1 1 2 2 3
5.	CONCLUSIONI E SVILUPPI FUTURI	.4
BIBL	IOGRAFIA	.4
INDI	NDICE	