
AUTOMATIC RESOURCE ALLOCATION
IN INDUSTRIAL MULTIROBOT SYSTEMS.

Riccardo Cassinis

Dipartimento di Elettronica - Politecnico di Milano
I-20133 Milano, Italy - Piazza Leonardo da Vinci, 32 - Tel. I-2-2367241

Tlx. 333467 POLIMI I

ABSTRACT

The paper proposes a methodology for robot programming,
based on the concept of automatically assigning available
physical resources to the tasks to be performed during program
execution, rather than specifying them in the user program.

This is specially useful in multirobot systems, when several
similar machines are included in the same robotized cell, and
when the system has to cope with unpredictable length
operations.

The most interesting feature of the system appears to be its
capability of maintaining good performance in those situations
where, due to faulty robots, to sudden changes in the production
cycle, etc., traditional scheduling and optimization techniques
fail to succeed.

The paper includes a discussion of the main advantages and
drawbacks of the technique, together with some experimental
results.

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

2

1. - INTRODUCTION.

Industrial robots have so far been programmed with several different
methods, among which the most interesting is undoubtedly the use of a
suitable language. The actual research trend is towards implicit
programming techniques, as opposed to explicit languages that have been
used up to now.

Although fully implicit programming is still quite far from being feasible,
some intermediate solutions can be found, that can speed up the
programming procedure and increase the system efficiency.

The paper deals with the problem, that is usually encountered in multirobot
systems, of deciding which machine has do perform each elementary task.
As it will be shown in the sequel, the choice should be done at run-time in
order to ensure the best performance of the system. The aim of the paper is
to show how this match can be done, by introducing the idea that robots
should be programmed in terms of virtual resources rather than physical
ones, and that the mapping between virtual and physical resources should
only be done at run-time.

This methodology is specially useful when several robots with similar
capabilities are included in the system, or when unpredictable length
operations must be performed, because it allows a better use of available
resources even in dynamically varying environments.

This research is still in the implementation phase, and no final results are
available yet. Some practical experiments have already been done, and
their results are described in section 7.

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

3

2. - EXPLICIT VERSUS AUTOMATIC RESOURCE
ASSIGNMENT.

Most of the existing robot programming languages were designed for
driving a single robot. It is therefore obvious that, when writing a
program, the operations being described by the programmer will be
executed from the arm that is being programmed.

In an ever increasing number of cases, however, these languages are to be
used to program multi-arm robots or multirobot systems. In this instance,
the programmer must always state, for each physical operation to be
performed, which arm will have to do it.

Although this procedure is the most logical one (when programming with
an explicit language, one must have in mind the complete sequence of
operations to be performed), it has several drawbacks, the most conspicuous
being that, since the operations to be done can have unpredictable length,
the time schedule cannot be completely defined, and this can lead to severe
inefficiencies.

It must also be noted that implicit programming does not imply automatic
resource assignment, nor does explicit programming require explicit
resource assignment: the two concepts are orthogonal, since implicit
programming only implies a synthetic description of the operations to be
performed, but the resources to be used to perform any task can be
explicitly defined.

Automatic resource assignment on the other hand implies that the program
does not contain any explicit reference to the resource that must perform
each task, but only a description of the kind of resource to be used to
perform it. The system will then assign the available resources to the tasks
to be executed, using an opportunistic scheduling technique.

It is extremely important to note that an optimal assignment can only be
done at run time, because, as it was said before, the exact process time
schedule cannot be foreseen [1]. The same approach can however be used
also during off-line program generation, as an aid to the correct resource
distribution problem.

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

4

The problem being investigated is quite similar to the one described in [2],
although the main issue is in this case the optimization of the operation of
several robots, rather than the optimization of the sequence of operations
of a single robot [3].

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

5

3. - THE ACTION POINT CONCEPT.

In order to make the discussion clearer, it will be useful to introduce a
concept that summarizes what was said in the preceding paragraph.

When programming a system with automatic resource assignment
capabilities, the user must define the available resources, and write the
program in terms of abstract resources that will be mapped with the
available ones only at run time.

An Action Point can be defined as a resource, that can perform
physical operations over the world surrounding the robot [4].

It is identified by several parameters, among which one may list:

- Kind: gripper, screwdriver, conveyor, etc.;

- Physical parameters: number of fingers, fingers opening,
size of screwdriver, etc.;

- Capabilities: PTP or continuous path movement, etc.;

- Current position: coordinates of the end effector;

- Physical status: mounted, not mounted, faulty, borrowed by
another robot, etc.;

- Logical status: free, busy;

- Geometric description: for trajectory planning and
coordinate conversion.

This list of parameters can be given in the form of appropriate tables or
data structures.

In the sequel, references will be made to a program that is being developed
to demonstrate the feasibility of the system. The program will first be run
in a simulated environment, and then applied to the multirobot system
available at our Robotics Laboratory.

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

6

3.1. - Virtual action points.

Virtual Action Points (VAP's) are the action points the programmer
refers to when describing the task the robot must accomplish.

One or more VAP descriptions must be included at the beginning of each
task to be executed. Each description must contain all necessary
information to allow the scheduler to decide which one of the available
tools should be used for performing the task.

As an example, the VAP description that is used in the program being
developed is the following:

type
Ident = integer;
ActionPointStatus = (APFree, APBusy, APNotMounted, APFaulty);
EffectorStatus = (EFFree, EFBusy, EFFaulty);
MountingFlangeType = (Fixed, Flange1, Flange2);
Frame = record

X, Y, Z, Phi1, Phi2, Phi3 : real;
end;

Cube = record
UpperLeft : Frame;
LowerRight : Frame;

end;
ActionPointKind = (Hand, Screwdriver, ConveyorBelt,

SuctionCup);
VAP = record

IdentNumber : Ident;
SymbolicName : string[30];
DOF : 1..6; {Degrees of freedom}
CP : boolean; {Continuous path capability}
Reach : Cube; {Required operating area}
case Kind : ActionPointKind of

Hand : (
FingersNumber : 2..3;
ProporOpening : boolean; {Proportional opening capability}
MaxOpening : real;
MinOpening : real;

);
Screwdriver : (

ToolType : (Hex, Nut, Cross, Blade);
ToolSize : real;
ScTolerancePlus : real; {These tolerances are used if the

 exact screwdriver is not available}
ScToleranceMinus : real;

);
ConveyorBelt : (
);

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

7

SuctionCup : (
Diameter : real;
SuTolerancePlus : real;
SuToleranceMinus : real;

);
end;

3.2. - Real Action Points.

Once the system starts executing the program, a mapping must be done
between VAP's and the tools that will actually execute the job, and that will
hereafter be referred to as Real Action Points (RAP's).

The mapping must be done by a scheduler that receives requests from the
tasks that can be activated, compares them with the available resources and
assigns the best fitting resource(s) to each task.

RAP's description is similar to VAP's description, although some parameters
are different, and some additional ones are necessary for allowing the
scheduler's work.

The RAP's description used in the aforementioned program is:

RAP = record
IdentNumber : Ident;
SymbolicName : string[30];
MountingFlange : MountingFlangeType;
Displacement : Frame;
RestingPosition : Frame;
Status : ActionPointStatus;
BearingEffector : Ident;
case Kind : ActionPointKind of

Hand : (
FingersNumber : 2..3;
ProporOpening : boolean;
MaxOpening : real;
MinOpening : real;

);
Screwdriver : (

ToolType : (Hex, Nut, Cross, Blade);
ToolSize : real;

);
ConveyorBelt : (
);
SuctionCup : (

Diameter : real
);

end;

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

8

3.3. - Effectors.

Since many robots use interchangeable tools, RAP's are not uniquely
assigned to any arm. A further concept has to be introduced: the
effector, that represents any device that can carry a RAP: typically, any
robot arm. This is the effector description that is being used:

Effector = record
IdentNumber : Ident;
SymbolicName : string[30];
DOF : 1..6;
CP : boolean;
Reach : Cube;
Status : EffectorStatus;
MountingFlange : MountingFlangetype;
BearingRAP : Ident;
ActualCoordinates : Frame;

end;

All the definitions given above are preliminary, and will have to be
amended and expanded for any practical use.

4. - THE SCHEDULER.

The job of the scheduler is quite complex, but it must be noted that it is
composed of several tasks which appear to be somewhat independent from
each other.

There are at least three points that deserve a great attention when
designing the scheduler.

First, since the user does not know which RAP will actually execute any
part of the program, trajectories cannot be specified by the user. This
requires that at least a gross motion planning mechanism should be
present in the system.

Second, it may very often happen that a RAP is available to execute a task,
but the parts to be operated upon are not within its reach limits. In this

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

9

case, it is necessary to displace the parts to be handled by some means (for
instance, conveyor belts).

Third, the choice of a RAP may be difficult if more than one RAP is
available that can execute a particular task. This involves some algorithms
to evaluate which RAP could execute the task in the best possible way,
taking into account several factors, such as execution time, accuracy, etc.

At the present moment, no technology is available which could allow the
construction of a general scheduler capable of dealing with any possible
situation, but a great amount of research is being devoted to the solution of
problems that are closely related to the ones being discussed. For instance,
the trajectory calculation for collision avoidance is exactly the same
problem that has been studied by many authors, among which some have
considered the problem of real-time trajectory calculation, which is exactly
what is needed here.

The same consideration applies to geometric modeling (that is also of course
strictly related to the previous problem).

If a more readily available solution is desired, one can simplify the problem
by applying some restrictions that, in many cases, do not significantly limit
the performance of the system.

For instance, one may assume that no physical interaction can take place
between different robots, or that these interactions are easy to handle (as it
happens in cartesian robots). In this case, only collisions between arms and
objects are to be dealt with.

An important prerequisite the system to be driven must satisfy is that a
multirobot real time control system be available [5]. This is mandatory,
since the program that explicitly describes the operations to be performed
is only created at run time, and no off-line translations are allowed.

The last two tasks the scheduler must accomplish (and the most peculiar
ones) are the physical resource mapping and the displacement of parts that
are not within reach of the chosen RAP.

VAP - RAP mapping does not require a great skill. Since VAP's
specifications for each task are stated in the program, the job of the
scheduler is to find, among the available RAP's, the one that can do the job.

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

10

This can be simply done by trying to match the required VAP's parameters
with the corresponding parameters of each available RAP.

The mapping process is actually composed of two phases: the construction
of a tree (a) and the choice of the best solution(b).

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

11

a1. The required VAP is inserted as the root of the tree.

a2. All RAP's are compared against the requested VAP, regardless of
their status. All RAP's that satisfy matching conditions are
appended to the root;

a3. For each RAP that has been included in the list just described,
all effectors that could carry it are appended to the node
representing the RAP itself. The structure of the resulting tree
is shown in figure 1.

b1. The tree is scanned in order to find the best solution. Since the
tree is usually quite small no special search techniques were
used so far. The criteria for deciding the value of each solution
are quite empirical, and further investigation should be done
on this particular problem.

b2. A decision is taken, according to the following rules:

1. If the required RAP is available, it is already mounted on a
suitable effector and the parts to be handled are within its
reach, the resource is assigned to the task, and the task is
started;

2. If the required RAP is available, but it is already assigned
to another task, and if cases 3 or 4 below do not apply, the
task is suspended and periodically rescheduled, until it
can be run;

3. If the required RAP is available, but it is not mounted on
any arm, and if a suitable effector is free, a routine is
entered that dismounts the RAP that is actually mounted
on it and mounts the appropriate one; the task is then
rescheduled;

4. If the required RAP is available, or can be made available,
but not in the area where the parts are currently placed,
an appropriate routine is entered, that displaces the parts
until they are within reach of the chosen RAP. This point
was not completely investigated so far;

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

12

5. If no RAP exists that can do the required operation, the
task cannot be executed, and an error message is issued.

A problem that might occur is that, since no reasoning is being done on the
instructions that follow a VAP definition, it could happen that, after having
assigned a RAP, the system might discover that the chosen RAP-effector
combination cannot perform the task because it cannot reach all requested
points. In order to prevent this malfunction, that would be very difficult to
correct, the field reach has been included in the records that describe
VAP's and effectors. It is the user's responsibility to define this area, that
must include all points the RAP will have to reach during the execution of
the task. In order to maintain things simple, this area is always defined as a
parallelepiped, although more accurate geometric descriptions could lead to
greater efficiency.

Figure 1. - Resources tree structure.

The first phase of the mapping procedure could also be executed only once
prior to program execution. The resulting tree would of course be more
complex, because it should include all possible RAP-effector combinations,
and the search algorithm would be longer. Investigation is being carried
on in order to state which method will be faster to execute.

After a VAP - RAP mapping has been done, all movements of the assigned
RAP must be checked for collisions, and, if case 4 has occurred, a coordinate
shift must be applied.

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

13

The rules just mentioned are now being checked for consistency and
inserted in the program. Routines to connect and disconnect RAP's and
effectors are being developed.

The block diagram of the resulting run-time system is shown in figure 2.

Figure 2. - Run-time system block diagram.

Multiprocessing is performed as in any other time-sharing system, and
synchronizing primitives are handled as usual.

5. - THE LANGUAGE.

In order to make a practical implementation of the system possible, a
suitable language is required. The Italian standard language VML [6] is thus
being expanded to accommodate the new primitives. At the same time, more
powerful control structures are being defined and implemented. The
resulting language will be named HVML (High level Virtual Machine
Language).

In a first phase, rather than actually expanding the existing language, a

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

14

pre-processor is being implemented (VML in fact already includes all
necessary data structures and primitives).

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

15

6. - SIDE EFFECTS AND OPEN PROBLEMS.

The programming method just described has a number of interesting side
effects.

First, the system will be able to cope with operations of unpredictable
length without losing efficiency.

Second, since the resource assignment is only done at run-time, it is
obvious that no task will be assigned to an unavailable resource. This means
that, if a resource develops a fault during program execution, the system
will continue its operation using the other available resources, if a
sufficient set of them is provided. The only affected parameter will then be
program execution time. This implements a sort of graceful degradation
capability of the whole system.

Third, the system will respond very well to dynamic changes of the
production cycle: for instance, the activation of asynchronous routines at
any time will not affect the execution of the main program.

Although multiprocessors and redundant computing systems are nowadays
widely used, transferring their technology to robots is not easy. The main
reason for this is that computers operate on data that are easily transferred
from one computer to another one, while robots process mechanical parts
that are much more difficult to displace. In many cases, however, the
problem can be simplified using standard pallets and standard conveyors
whenever possible. This is probably the part of the whole system where
non-deterministic programs (such as expert systems) could be successfully
applied.

Other problems concern the level at which the system should be placed. In
theory, such programming method could be applied to the whole factory
but, in practice, this would give rise to countless additional problems.
Probably the best possible application at the present state-of-the-art is at
the processing cell level.

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

16

7. - EXPERIMENTAL SETUP.

The described method is at the proposal level, and no practical
implementation has been done so far. Some experiments were however
carried on to demonstrate the feasibility of the project. For instance, a
demonstration program was written on Supersigma robot that behaves as
an automatic resource handler.

The goal is to place some bolts on the working table of Supersigma
according to a given path. These bolts are placed at random along six
straight lines, as it may be seen in figure 3. The bolts are located by passing
over the lines with the open gripper, and by using a photocell detector to
sense when the gripper is over one of the bolts.

The program was written as two parallel tasks, each one searching on one
side of the board. As soon as one of the grippers grasps a bolt, it will read its
destination coordinates from a file, that is shared among both tasks.

Therefore, the programmer does not know which arm will place which
bolt, because the sequence of the operations depends on the initial position
of the bolts.

The program works amusingly, since a very slight difference in the initial
position of the bolts may lead to a completely different execution.

A problem is that, in some situation, the two arms may get stuck in a
deadlock. In this particular situation, it was easy to implement a third task
that monitors the two other and, when it detects that both of them are stuck,
it takes some appropriate action (for instance, forcing one of the two arms
to go outside the working range of the other one).

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

17

Figure 3 - Experimental setup.

8. - CONCLUSIONS.

The technique of automatic resource assignment described in the paper
lays between explicit languages and fully implicit programming systems.
Its main advantage is that it can be readily applied in a number of cases
where traditional programming would lead to inefficiencies, and that, on
the other side, it does not require the sophistication of implicit
programming.

On the other hand, the research effort being devoted to the problem will
not be wasted when implicit languages will come into use, since in this case
automatic resource assignment in any system that includes more than one
mechanical arm will be fundamental.

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

18

REFERENCES.

[1] Sedillot, S.: "Some Computing Issues in Multiple Robot Systems", in
Advanced Software in Robotics, Dantine & Gérardin (eds.), North
Holland, 1984.

[2] Fox, B.R., and Kempf, K.G.: "A Representation for Opportunistic
Scheduling", in Proc. 3rd International Symposium of Robotics
Research, MIT Press, Boston, Ma, 1986.

[3] Cassinis, R.: "An Application of Automatic Resource Sharing to Robot
Programming", in Proc. 3rd International Symposium of Robotics
Research, MIT Press, Boston, Ma, 1986.

[4] Bisiani, R., and Cassinis, R.: "The Development od a Multi-Micro
Processor System to be used in the Control of an Industrial Robot", in
Proc. "MI-MI '76", Zuerich, 1976.

[5] Cassinis, R.: "Hierarchical Control of Integrated Manufacturing
Systems", in Proc. 13th International Symposium on Industrial
Robotics, Chicago, 1983.

[6] Bison, P., Lorenzin, G., and Pagello, E.: "The Formal Definition of VML
and a Proposed Portable Implementation", in Proc. 11th International
Symposium on Industrial Robotics, Tokyo, 1981.

R. Cassinis Automatic Resource Allocation in Industrial Multirobot Systems

19

