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Abstract— A fuzzy logic controller for behaviour-based
mobile robots is presented. All knowledge is contained in
XML formatted files. In this way the fuzzy logic controller
is completely independent from the robot. After having
described the philosophy and the structure of the system, we
show the results of experiments performed using the simulator
we have created.

Index Terms— Fuzzy logic, XML, behaviour, inferential
engine

I. INTRODUCTION

The state of the art of mobile robots shows how the use
of robots to support human activities is more and more
aimed to specific and complex tasks.
This requires robots equipped with a high number of
devices to accomplish needed operations, often resulting
in high energy consumption and consequent low autonomy.
Such robots are also expensive and possibly unreliable, due
to complexity.
One of the goals for the future of mobile robots seems to be
the creation of robot swarms, where units cooperate. In this
case, each robot can be equipped just for a specific, simple
task; it is easier to replace in the community it works in,
and is much cheaper and more robust. Autonomy is also
increased and the robot can work for longer periods or
move to farther destinations.
In fact in a specific time slice not all robot are needed
to work but only those equipped for the current task.
In the worst case, when all robots are necessary for the
current task, the global energy consumption is higher
than in the case of a single machine, but different jobs
are executed in parallel, increasing the potentiality of the
global system. Another way of reducing complexity and
energy consumption is to remove from the physical robot
all the devices that do not require being on board: this
includes processing power and some sensors. In this case,
we can refer to the machine as a “pseudo tele-operated
robot”: it simply executes instructions received from a
remote controller (or from a cluster of remote controllers).
This particularly applies to robot swarms, where removing
computing power from robots and placing it elsewhere can
lead to significant advantages.
Esteroceptive and proprioceptive sensors can produce infor-
mation that are sent to the remote controller. The controller
thus has a description of the state of the robot and uses this

information, together with the task to be accomplished, to
decide instructions for the robot to execute. Commands to
the robot actuators are sent to the swarm’s unit whose only
task is to execute them.
This is the purpose of this project: to create a fuzzy infer-
ence engine, fully independent from the robotic architecture
it will manage, from the environment it will operate in, and
from the type and position of the sensors that will be used.
We decided to use fuzzy logic because it is robust to noise,
and it also allows co-existence of conflicting behaviours
whose contradictions are solved through blending.
We decided to interface our engine to the world through
XML formatted files: the engine can then be considered
fully independent from the way we will use it, and it
can coordinate robots with different structures, in various
environments and with different tasks. These files store all
the information needed to operate: input values, behaviours,
rules, etc. Our engine is just an interpreter which operates
in a “Babel” of robot architectures [Blank et al., 1999],
environments, tasks, sensors, etc.
A block diagram of the inferential engine is shown in
Figure 1. XML file format can be considered a de facto
standard, and we can use a text editor to manage informa-
tion, or any other structure.
XML was adopted because it is a simple, very flexible
text format derived from SGML (ISO 8879). Originally
designed to meet the challenges of large-scale electronic
publishing, XML is also playing an increasingly important
role in the exchange of a wide variety of data on the
Web [Quin, 2004].
This makes our engine capable of operating easily with
existing or even future systems.

In the sequel we will focus on our engine as a purely
reactive architecture. To obtain a deliberative or hybrid
architecture one can simply change the contents of XML
formatted files. The architecture, named Robutt after a
robot dog from an Asimov novel, is based on a robocentric
system, where all pieces of information to be computed are
referred to the actual position of the robot.

II. FUZZY INFERENCE ENGINE

In order to study the functionality of this system, we
have tested it in simple robot guidance tasks, like “obstacle-
avoiding” and “target-reaching”



Fig. 1. Global architecture.

A purely reactive system could be a good solution for these
tasks, as it is fast, requires few computational resources,
and an already existing planner can be used over it. Other
advantages of purely reactive systems are:
• emphasis on the importance of a tight relationship

between perception and action;
• absence of abstract knowledge and symbolic reason-

ing;
• vertical decomposition of the problem into sub-

problems to be executed in parallel;
• modularity of the software;
• architectures are often inspired by theories from sev-

eral disciplines (i.e. biology, psychology, neurology).
Following the classics outlines [Brooks, 1986] we could
say that Robutt is composed of two components: functional
module and behavioural module. The functional component

Fig. 2. Functional view.

(Figure 2) acquires information to be used as input to the
engine. As these data have been processed, the functional
component blends resulting actions and transmits values to
actuators. The functional component is composed of:

• translation block: it is an interface between infor-
mation about the environment surrounding the robot
(stored in XML formatted files) and data processed
inside the engine;

• conversion layer: information acquired from trans-
lation layer are here transformed into fuzzy values
(fuzzification) and, after computations, output fuzzy
values are re-transformed into crisp values (defuzzifi-
cation);

• calculus layer: it is composed by three sub-modules,
each one managing a sub-tree: predicates sub-tree, be-
haviour triggering conditions sub-tree and behaviour
evaluations sub-tree;

• decision layer: decides actions to be carried out
on the basis of environment information that are
provided by previous layers. Behaviours are enti-
ties totally independent from each other and from
the environment, describing activities to be carried
out [Invernizzi and Labella, 2000].

Fig. 3. Structural view.

The structural scheme (Figure 3) shows the proposed
architecture and how it is focused on modular development
for the system to be easily reusable and adaptable to future
necessities.
We chose to use an inferential engine based on fuzzy
logic to create our interpretative black box based on XML
formatted files. This implies that to attain a given target it
is necessary to decompose the problem in sub-behaviours
and to blend their outputs to accomplish the global task.
Basic behaviours are extremely specialistic: only by blend-
ing them we obtain global “intelligent” behaviours.
Outputs from basic activated behaviours and from the
engine are blended by the Blending Module. Also this
block acts on the basis of the global strategy described
in XML formatted files.

III. INPUT/OUTPUT

The engine input is an XML formatted file (Table I).
In our test the goal for the robot is to move to a target
object avoiding some obstacles. Each node in the XML



<?xml version="1.0"?>
<object>

<target>
<name>T1</name>
<distance>350.5</distance>
<heading>0</heading>
<radius>5</radius>

</target>
<obstacle>

<name>O1</name>
<distance>230.5</distance>
<heading>3</heading>
<radius>5</radius>

</obstacle>
<obstacle>

<name>O2</name>
<distance>130.5</distance>
<heading>40</heading>
<radius>5</radius>

</obstacle>
</object>

TABLE I
EXAMPLE OF AN XML FORMATTED INPUT FILE DESCRIBING THE

ENVIRONMENT SURROUNDING THE ROBOT.

input file describes an object in the environment. The
node label is used by the XML parser to identify different
entities in the environment: information enclosed between
labels target and /target describe the target object,
while sub-trees beginning with obstacle labels provide
information about objects to be avoided while performing
the task.
Our work is not aimed at determining the type and position
of objects present in environment. These pieces of infor-
mations should be generated by external devices.
Variables stored in these nodes describe:
• distance [mm];
• heading [◦];

During the testing phase the simulator (Section VI) gen-
erates for any loop an input file to describe the new
environment state. This file describes the environment after
simulated execution of the instruction of the previous loop.
The engine output is a new XML formatted file containing
information that the robot controller must simply transfer
to its actuators. In our experiment we used the robot
MARMOT (Mobile Advanced Robot for Multiple Office
Tasks, developed at the Advanced Robotics Laboratory of
our university), Figure 4.

MARMOT has three omnidirectional wheels, that make it
holonomous (Figure 5). An interesting thing about such
structure is that, since it has a non-redundant structure,
any movement command to its motors results in an actual
movement of the robot, and no checking of the consistency
of movement commands is required. As the engine receives
the input file, it fuzzyfies each crisp value on the basis of
the contents of the membership function file. This process
assigns a credibility degree to each input according to
its membership function. After the computations described
in the following paragraphs have been completed by the

Fig. 4. MARMOT.
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Fig. 5. Representation of two kinds of possible movements.

engine, an opposite process is carried out to transform
fuzzy values into crisp ones. Therefore, by modifying the
membership function input/output files (Table II), it is
possible for the engine to work in any field and with any
goal, since these two files are the interfaces between the
controller and the world.

IV. FUZZY RULES

Fuzzy rules are the bricks to build the operative knowl-
edge of the robot on the basis of a human expert’s heuristic
knowledge.
Fuzzy rules template is:

IF <antecedent> THEN <consequent>

where the antecedent could consist of an arbitrarily large
number of preconditions combined through logic operators
OR, AND and NOT; for example:

IF (Target ∈ N AND Target ∈ far AND NOT
(Obstacle ∈ N)) THEN (Speed ∈ mid AND

Phy ∈ N AND Jog ∈ zero)

This fuzzy rule states that if the target to be reached is far
and north of the robot, and no obstacles are in the north
direction, then the robot must advance pretty fast along its
North direction.
Obviously, while in the antecedent all the aforementioned
logic operators can be used, in the consequent only the
AND operator is acceptable.
Moreover, credibility values (i.e. the membership degree
of a variable to a membership function) range between “0”



<?xml version="1.0"?>
<mbf_input>

<distance>
<close>

<type>trapeze</type>
<a>0</a>
<b>0</b>
<c>40</c>
<d>70</d>

</close>
<near>...</near>
<far>...</far>
<very_far>...</very_far>

</distance>
<heading>

<N>
<type>untrapeze</type>
<a>0</a>
<b>45</b>
<c>315</c>
<d>360</d>

</N>
<NE>...</NE>
<E>...</E>
<SE>...</SE>
<S>...</S>
<SW>...</SW>
<W>...</W>
<NW>...</NW>

</heading>
</mbf_input>

TABLE II
AN EXAMPLE OF XML FORMATTED FILE DESCRIBING INPUT FUZZY

SETS.

and “1”, included. This implies that T-norm and T-conorm
are just the AND and OR operators of classic logic, where:
• T-norm

1) min (x, y)
2) x · y
3) max (x+ y − 1, 0)

• T-conorm
1) max (x, y)
2) x+ y − x · y
3) min (x+ y, 1)

Rules are transmitted to the inferential engine through the
rules.xml file that also supplies information to compute
fuzzy inferences. Thresholds of triggering conditions and
blending rules are also stored in this file. More precisely
we can say that the rules.xml file contains the robot
behaviours: for this reason the file is structured as in Table
III.

Table III shows the form of the rule described in the
previous example: the rule node contains information
for the engine to compute the fuzzy inference. As a
matter of fact, the credibility value of the speed output
variable in its membership function is the result obtained
through T-norm operator whose inputs are the degrees of
target membership to close and N ; the same real
number is attributed to output variables jog for zero and
phy for N .
Each rule is necessary for a certain task (reaching the

<rule>
<speed>stop</speed>
<jog>zero</jog>
<phy>N</phy>
<and>

<target>close</target>
<target>N</target>

</and>
</rule>

TABLE III
PART OF RULES FILE.

target, avoiding obstacles, etc.), thanks to a set of rules
we obtain a “global intelligent behaviour”. Writing a set
of rules is not commonplace, it is necessary to adopt
strategies and devices resulting from experience and in-
tuition [Saffiotti et al., 1997]. While creating rules we as-

(a) (b) (c)

Fig. 6. Representation of the environment surrounding the robot in the
graphical interface of the simulator (a); robot’s view of the target position
(b); robot’s view of obstacles positions (c).

sumed that there was only one target and that all the
obstacles had the same importance. This led to implement-
ing a target position map and an obstacles one that are
scanned when the engine processes the rules antecedents.
This can be seen in Figure 6, that shows (in image (a))
the position of the robot, of the target that has just been
reached and of the obstacles. The following two images
(b) and (c) contain a graphic representation of what has
been explained before: we calculate an AND for every
membership function couple of distance and heading, then
we calculate an OR between the couples of all the obstacles
thus obtained.

V. TRIGGERING CONDITIONS AND CONTEXT
DEPENDENT BLENDING

A. Triggering conditions
We introduced in the previous section the concepts of

the activation threshold of the behaviour and the outputs
of basic behaviours blending (this will be shown in the next
subsection) to obtain a functional engine.
One can see the fuzzification, blending and defuzzification
blocks in the functional engine scheme (Figure 7). The ef-
fective engine component is the one labeled Inference .
This is the scheme we have chosen for Robutt, in which
the block that evaluates the triggering condition is scanned
before the sub-tree of behaviour (in order to avoid wasting



Fig. 7. Fuzzy inferential engine scheme.

computational resources) and there is a blending block for
each behaviour. The purpose of activation threshold is to
state the effective possibility that the robot behaviour is not
going to change.
In this way the computational load is decreased because
the engine is not forced to scan all the rules contained in
the file.

B. Context dependent blending
Another important component is the blending block that

fuses the outputs of basic behaviours. This block allows
the coexistence of behaviours even if there are conflicting
tasks to be performed.
Various strategies exist for building the blending block,
and all belong to one of two large groups: “cooperative”
and “competitive”. In the latter case the arbitration is quite
simple: only one basic behaviour wins. This strategy has
some advantages, but its drawbacks are significant, the
main one being the fact that the “fuzzy” idea is completely
lost.
For these reasons Robutt uses a cooperative arbitration
scheme, more qualitative than quantitative (therefore it is
similar to fuzzy logic); in fact the cooperative arbitration
allows all activated behaviours to contribute in some way
to the controlling action that is output from the engine.
The relative weight of each behaviour depends on the
kind of arbitration used to manage the behaviour itself. In
fact using the competitive arbitration scheme the weights
of losing behaviours become useless.
To implement the arbitration we shall use the strategy
in which there is for every fuzzy rule a blending block,
or the strategy that has a blending block for each basic
behaviour.
Blending rules are contained in the component labeled
meta-rules base (Figure 7)
Formally:
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DesBi - desiderability function [Ruspini, 1991],
[Enrique, 1991], [Saffiotti et al., 1999]

dk2 , d
k
1 , ..., d

k
N - relative weights of k-th meta-rule.

In Robutt we use the strategy that has a blending
block for each basic behaviour.

VI. SIMULATIONS AND TESTS

To test the engine, and to create an archive of basic
behaviours, we built a simulator with graphical user
interface (Figure 8). This simulator is configurable to
analyze the robot’s response time.
Tests were run on a laptop Acer 525TE, PIII, 700Mhz
and 128MB RAM, with ATI Rage Mobility Pro 2x (8MB).

Fig. 8. Graphic User Interface.

The simulator inputs are stored in the XML formatted file
as crisp values to be executed by the robot actuators. The
simulator then evaluates, given a configurable temporal
resolution, the relative displacement of the robot, creates
an XML formatted file containing fuzzy values to describe
the environment surrounding the robot. This file is fed to
the inferential engine.

Fig. 9. Global architecture with simulator.

As a first case of study, we chose a simple, yet significant
problem: navigation towards a known goal in an unknown,



moderately cluttered 2-D environment. If we transpose the
engine in an ethnological field of study, the robot’s actions
are determined by these behaviours: aversion, protection
and pursuit.
Robutt is a purely reactive architecture so it takes decisions
step by step. This allows it to work even if obstacles
and the target are moving; Robutt takes information about
environment as a stile picture.
To test Robutt we implemented two behaviours:
• reaching-the-target;
• avoiding-obstacles.

We decided that the most important point was the robot
safety: therefore the reaching-the-target behaviour weight
is lower than the avoiding-obstacles behaviour weight.
The following data were directly measured from the be-
haviour of the developed system:
• total step execution time;
• parsing time;
• time to create memory lists;
• inference time.

These values were measured in three different environmen-
tal conditions: target only, target and five obstacles, target
and nine obstacles (Table IV).

target target target
5 obstacles 9 obstacles

Total time 4.9µs 5.3µs 5.5µs
Parsing time 3.5µs 3.7µs 3.9µs

Time to create lists 0.2µs 0.2µs 0.3µs
Inference time 1µs 1.2µs 1.2µs

TABLE IV
RESULTS OBTAINED WITH PURELY REACTIVE ENGINE ONLY.

The target is 9.99 meters from the robot’s starting position.
Using the simulator we also gathered data about:
• total task execution time;
• parsing time of all input files;
• time to create memory trees;
• inference time.

These were measured in a world with no obstacles, and in
one with five obstacles (Table V).
It is important to stress that the robot reaches the target
in all tests. The timeout condition (Table V) is forced to
determine the in maximum time value in the worst case.
We obtained satisfying results for all computational cycle

times and for task completion times even with a large
number of objects in the environment where the robot
worked.

VII. CONCLUSIONS AND FUTURE RESEARCH

The characteristic of Robutt of being independent from
the application domain results in an extremely flexible and
configurable engine, thanks to the XML formatted files
that contain all the knowledge.
Test results satisfied all our expectations, and we are now
in the process of inserting the inferential engine into our
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Fig. 10. Graphical representation of tests.

global architecture for robot swarms Device Communities
Development Toolkit [Cassinis et al., 2001]. In fact in
a global system in which robots, calculators, satellites,
sensors, cameras, webcams, etc. work, the controller has
every kind of data deriving from the exchange of the
messages between community members. Robutt has been
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TABLE V
SIMULATION RESULTS.

realized as a purely reactive architecture, it has no memory
and cannot manage any task requiring memory. This
resulted in a purely reactive engine [Arkin, 1998], but it is
possible to use our system with a deliberative/planner block
(e.g. Saphira [Konolige et al., 1997][Konolige, 1999]
[Konolige and Myers, 1996]), creating an hybrid
architecture, that is perhaps the best solu-
tion [Lyons and Hendricks, 1992]. Different architectures
are obtained just by setting appropriately XML formatted
files, a feature that allows Robutt to be even more highly
usable and functional.

REFERENCES

[Arkin, 1998] Arkin, R. C. (1998). Behaviour-Base Robotics. MIT-Press.
[Blank et al., 1999] Blank, D. S., Hudson, J. H., Mashburn, B. C.,

and Roberts, E. A. (1999). The XRCL Project: The University
of Arkansas’ Entry into the AAAI 1999 Mobile Robot Competi-
tion. Technical Report CSCE-1999-01, The University of Arkansas.
http://dangermouse.brynmawr.edu/xrcl/.

[Brooks, 1986] Brooks, R. A. (1986). A robust layered control system
for a mobile robot. IEEE Journal of Robotics and Automation,
RA-2(1):14–23. http://www.ai.mit.edu/people/brooks/papers/AIM-
864.ps.Z.

[Cassinis et al., 2001] Cassinis, R., Meriggi, P., Bonarini, A., and Mat-
teucci, M. (2001). Device communities development toolkit: An
introduction. In Proceedings of EUROBOT’01. Lund, Sweden.

[Enrique, 1991] Enrique, R. (1991). Truth as utility: A conceptual
synthesis. In Proceedings of the 7th Annual Conference on Uncertainty
in Artificial Intelligence (UAI-91), pages 316–322, San Mateo, CA.
Morgan Kaufmann Publishers.

[Invernizzi and Labella, 2000] Invernizzi, G. and Labella, T. H. (2000).
Sviluppo di un gestore di comportamenti fuzzy per agenti autonomi.
Master’s thesis, Politecnico di Milano.

[Konolige, 1999] Konolige, K. (1999). Saphira users’ manual.
[Konolige and Myers, 1996] Konolige, K. and Myers, K. (1996). The

Saphira Architecture for Autonomous Mobile Robots. MIT-Press.
[Konolige et al., 1997] Konolige, K., Myers, K. L., Ruspini, E. H.,

and Saffiotti, A. (1997). The Saphira architecture: A design for
autonomy. Journal of experimental & theoretical artificial intelligence:
JETAI, 9(1):215–235. http://iridia.ulb.ac.be/saffiotti/abstracts.html;
ftp://iridia.ulb.ac.be/pub/saffiotti/robot/jetai96.ps.

[Lyons and Hendricks, 1992] Lyons, D. M. and Hendricks, A. J. (1992).
Planning, reactive. In Encyclopedia of Artificial Intelligence, pages
1171–1181. John Wiley, 2nd edition.

[Quin, 2004] Quin, L. (2004). Extensible markup language (xml) activity
statement. http://www.w3.org/XML/Activity.

[Ruspini, 1991] Ruspini, E. H. (1991). On the semantics of fuzzy logic.
Int. J. Approx. Reasoning, 5(1):45–88.

[Saffiotti et al., 1999] Saffiotti, A., Ruspini, E., and Konolige, K. (1999).
Using fuzzy logic for mobile robot control. In Zimmermann, H.-
J., (Ed.), Practical Applications of Fuzzy Technologies, volume 6
of Handbooks of Fuzzy Sets, chapter 5, pages 185–205. Kluwer
Academic, MA.

[Saffiotti et al., 1997] Saffiotti, A., Ruspini, E. H., and Konolige, K.
(1997). Using fuzzy logic for mobile robot control. In Dubois, H. P. D.
and Zimmermann, H. J., (Eds.), International Handbook of Fuzzy Sets
and Possibility Theory, volume 5. Kluwer Academic Publishers Group,
Norwell, MA, USA, and Dordrecht, The Netherlands. Forthcoming.


