
A Very Low Cost Distributed Localization and
Navigation System for a Mobile Robot

Riccardo Cassinis1, Paolo Meriggi, Maria Panteghini
Department of Electronics for Automation

University of Brescia
Via Branze 38 - 25123 Brescia - Italy

Abstract – This paper presents one of the first applications of a novel message-oriented middleware, DCDT, that
has been recently developed at University of Brescia in collaboration with Politecnico of Milano.

This simple and low-cost experimental application is aimed at detecting and localizing a mobile robot in
indoor environments using a commercial off-the-shelf webcam and a couple of active markers.

The most important point is that the system takes advantage of already existing computing and
communication resources, thus limiting the cost of the additional equipment to a negligible amount. DCDT, on
the other hand, reduces the burden of coordinating the various tasks and of establishing communication links to
a simple and straightforward task.

Some experimental results are included, that show good accuracy and reliability, despite the low resolution
and quality of the used devices.
Index Terms – Mobile Robotics, Localization, Low Cost, DCDT, Distributed Systems, Active markers.

1. Introduction

Taking advantage of the pervasive and ubiquitous diffusion of digital devices, we recently introduced a novel
approach [1] to mobile robotics. According to this approach, a mobile robot can be seen as the acting portion of
a distributed system, embedded in a certain environment.

In contrast to what we called the “monolithic approach” of common mobile robotics design, our goal is the
realization of light, simple and therefore low-cost mobile devices, that only carry on board actuators and sensors
that are needed for a reliable exploitation of their tasks, embedding most of the remaining portion of sensors and
processing units into the environment, using whenever possible resources that are already available for other
reasons.

Of course, this approach requires the presence of a reliable and stable communication layer. This common
layer among all the devices consists of a recently developed message oriented middleware, Device Communities
Development Toolkit (DCDT); DCDT is in fact responsible for the delivery of messages throughout the system
and, via a suitable API, manages each single task running on the processing units.

In this paper we describe one of the first real experiences that used DCDT in mobile robotics in order to
realize a small device community: the experiment, designed and developed at the Advanced Robotics Lab of the
University of Brescia, basically consisted in navigating a blind mobile robot (carrying a couple of active
markers) via the localizations offered by a webcam and a PC, using the laboratory LAN as the communication
means.

The low cost of the hardware used, the ease of development and the modularity of the Device Communities
approach, make the system very appealing for several robot-related applications, especially in the consumer
market. Despite the economy of the system, however, experimental results are very promising, especially if seen
in the perspective of a more extensive use of DCDT devices interacting with each other.

2. Description of the system

The system we have designed and implemented is depicted in figure 1: an omnidirectional sensorless mobile
robot, MARMOT, that only carries onboard a small microcontroller unit, is connected via a serial line (soon to
be replaced by a wireless IEEE 802.1 link) to a PC that runs a suitable DCDT module, performing computations
required to drive the robot along pre-defined paths to reach assigned set-points.

MARMOT (Fig. 1, right) is an omnidirectional robot designed and realized at Advanced Robotics Laboratory
(ARL) of the University of Brescia. It is built with three Mecanum wheels [2] (recently used also in [3]). These
wheels are driven by three stepping motors, controlled by a Motorola 68HC11 microcontroller, that receives

1 Corresponding author: riccardo.cassinis@unibs.it

motion commands via an RS-232 serial link.

Fig. 1. Schematic representation of the system (left). The omnidirectional robot MARMOT (Mobile Advanced
Robot for Multiple Office Tasks), equipped with the two active markers (right).

Two active markers were placed on top of the robot, and are used to visually localize the robot. They were
realized using two halogen bulbs enclosed in small cones of coloured plastic film. The chosen colours are red
and blue, in order to maximize their distance in the RGB colour space, hence enhancing the probability of
correctly detecting the markers.

Robot localization is exploited by means of a commercial off-the-shelf webcam: for this experiment we used a
Philips ToUcam Pro PCVC740K, priced well under €100, with a resolution of 640x480 pixels, 256 colours and
a frame rate up to 30 fps. This camera is connected via a USB link to a second PC, where another DCDT
Member processes incoming images and provides the required stream of coordinates. Both computers are
connected with each other and to the Internet over a 100 Mbit/s Ethernet LAN.

On both PC stations, appropriate DCDT Members run graphical user interfaces, providing the users an easy
access to the system; the most important being the one running on the Webcam station, that allows the user to
define the set-points sequence to be sent to the robot.

3. An Application of DCDT - Devices Communities Development Toolkit

The middleware DCDT [1] was designed and realized to allow the joint use of several interconnected devices,
which could interact with each other in a transparent way, regardless of the physical communication means used.

By exploiting the abstraction features offered by Object Oriented Programming, DCDT provides the user with
a suitable Application Programming Interface (API) to easily embed software agents into active and independent
modules. Such modules, called Members, are software objects whose methods are executed in a concurrent way
by threads, and communicate with each other by sending and receiving messages according to a
publish/subscribe mechanism. Members can then be divided basically into two categories: user members, whose
methods are written by the user, and system members, that perform background tasks, such as dispatching
messages, contacting and keeping the communications with other devices, etc.

Communication among different devices is carried out in a completely transparent way through suitable
software objects, called Channels, that are abstractions of the underlying physical means actually used.

All the modules and the objects required by the architecture are contained in the main object, called Agora.
The whole set of the interacting members on the same or on different Agorae is referred to as the DCDT
Community.
As shown in Fig. 2, in this experiment four user members compose the DCDT community: two on the Webcam
Station (in Agora W), and two on the Control Station (in Agora C). On each Agora, one member is devoted to
the robot localization and motion (Webcam Member on the Webcam Station and Control Member on the Control
Station), while the other one is the graphical user interface (GUI). Note that some members directly interact with
physical devices: the Control Member on Agora C directly sends motion commands to the microcontroller unit
via serial link (since a DCDT extension for the 68HC11 microcontroller is not available yet) and the Webcam
Member on Agora W directly acquires images from the USB camera by means of a suitable OS driver.

Control station

Webcam station

Robot

LAN

RS-232

Fig. 2. Schematic representation of the webcam experiment

The interactions among user Members in this experiment could be sketched according the following pattern:
1. The Webcam Member acquires an image and calculates the position of the centroid and the orientation of the

segment between the two lights (when possible), providing the whole community with the requested
coordinates, according to the process that will be described in the next section.

2. The GUI Member on Agora W waits for the initial position of the robot to be received and the presence of
the Control GUI on Agora C. When it receives a suitable signal from Agora C, it prompts for the set point
sequence to be reached by the robot, and then starts sending each single set point to be reached, waiting for
a message from Control Member on Agora C reporting the conclusion of the path.

3. The Control Member on Agora C continuously receives the actual coordinates of the robot and adjusts the
motion command sent to the Microcontroller in order to reduce the Euclidean distance between them. When
such distance falls within a predefined constant radius (e.g. 20 mm), the message of Set point Reached is
shared among the communities, triggering the GUI Member on Agora W to send the next set point.

The GUI Member on Agora C during the experiment has been simply devoted to the visualization of the
message traffic, mainly for debugging purposes, for its native goal should be the direct management of the robot
motion by a suitable interface panel, in case of communication failure with the Agora W.

4. Recognition Algorithm

The recognition algorithm was developed as a M.Sc. thesis work [4] and basically consists in 5 steps:
acquisition, RGB conversion, thresholding, identification and transformation.
• Acquisition: During this step the image is acquired from the webcam and saved in a suitable memory area
available to the Webcam Member. The camera image is 640x480 pixels, coded according the YUV420P2 format.
The use of active markers proved very useful, since it allows tuning the shutter speed to the amount of energy
emitted by the lamps, greatly reducing the false positive detection.
• RGB Conversion: this step was found to be necessary because of the really complex calculations required
when using the plain Y-U-V image format natively provided by the webcam. Instead, working with RGB
images and searching for red and blue blobs becomes simply a matter of thresholds, greatly reducing calculations
to much easier comparisons.
• Thresholding: after the conversion, the whole image is thresholded, leaving only four different colours: red
and blue for the pixels that have only one of the chromatic components over threshold, white for the ones with
both red and blue components over threshold and black for the remaining pixels. The aim of this operation is to
deliver an image where it is much easier (i.e. faster) to detect the region of interest (ROI). In average conditions,
these ROIs are represented by a white blob surrounded by red or blue coronas, as in Fig. 3.
• Identification: In this phase the acquired image is processed according to a blob-growing algorithm, in order
to characterize the red and blue ROIs. The detected ROIs (which could eventually be many more than two) are
carefully analysed in order to reject false assignments (e.g. lamps, neon lights or sun reflections): for this reason,
some morphological parameters of the ROIs are calculated:

1. Max/min dimension ratio of white pixels blob
2. Ratio of the number of blob’s white pixels and the area of the smallest square containing the blob

2 also known as "I420", 12bpp, basic planar format, Y-U-V (Y/Cb/Cr) order

Agora W Agora C

Webcam
Member

Webcam

Control GUI
Member

Control
Member

Webcam Station

USB cable

LAN

Control Station

Step Motor

Microcontroller

RS-232 serial
cable

Robot

Webcam GUI
Member

3. Difference between the height and width of the white blob
4. Max/min ratio of coloured pixels
5. Amount of pixels with colours different from the blob’s average colouring, which might be due to the

other marker or from natural lightning.
6. Amount of white and coloured pixels in the image, that indicates the possible abnormal presence of

strong light sources (for instance to the sun light, etc.)
•

Fig.3. Difference between the image of the red light before and after thresholding

If all these morphological parameters are within predefined limits, the coordinates of ROI centroids in the image
space are calculated and delivered. Since the pattern we are searching is basically a small group of white pixels
surrounded by coloured ones, we calculate the centroids of the white blobs:

Â
=

=
N

i
iredcentroid xx

1
_ , Â

=

=
N

i
iredcentroid yy

1
_

Â
=

=
N

i
ibluecentroid xx

1
_ , Â

=

=
N

i
ibluecentroid yy

1
_

where N is the number of white pixels and ix , iy represents their position in image coordinates.

• Transformation: Image space coordinates []FF yx are transformed into real world Cartesian coordinates

†

xW yW zW[] according to the following calculations sequence. First, we have to calculate the distorted

coordinates []DD yx using their relationship with the image coordinates []FF yx , derived from a theoretical

model of the webcam that doesn’t consider parameters like xs , empirically chosen by the user, that models the

difference in scale of the two axis of the camera’s sensitive area and Xd ' and Yd :

() 1.' --= XXFXD sCxdx ()YFYD Cydy -=
CY

CX
XX N

N
dd ='

where Yd is the distance between two adjacent CCD elements, CXN and CYN the number of sensor elements

along X and Y directions, XC and YC the coordinates, in pixels, of the real centre of the image.

After that, we obtain the undistorted coordinates []UU yx from []DD yx using two parameters, XD and

YD , that come from the first-order radial distortion coefficient 1k .

XDU Dxx += YDU Dyy +=
where

()K+= 2
1rxD DX k ()K+= 2

1ryD DY k
and

22
DD yxr +=

Now we can find the first relationship with the real-world coordinates writing these equations that model the
theoretical perspective projection having as a fundamental parameter the focal length f:

f

zx
x CU

C =
f

zy
y CU

C =

The triplet []CCC zyx represents the world coordinates expressed in a camera-centered coordinate system. The

third coordinate, Cz , is in effect a parameter of the system, being always constant: this is due to the limitations

in the motion of the robot, that cannot move along the Z axis; thus, knowing the height of the lights from the
ground, real world coordinates are calculated by a matrix multiplication in a 2D _ 2D transformation. This is
also the reason why we can localize and navigate the robot using a single camera.

The final step allow the delivering of coordinates []WWW zyx in the Cartesian system chosen by the user:

˜
˜
˜

¯

ˆ

Á
Á
Á

Ë

Ê

-

˙
˙
˙

˚

˘

Í
Í
Í

Î

È

=

˙
˙
˙

˚

˘

Í
Í
Í

Î

È
- T

z

y

x

R

z

y

x

C

C

C

W

W

W
1

R and T are, respectively, the rotation matrix and the translation vector of the webcam.
All these steps, require a careful calibration of the system for good accuracy; there are in fact many parameters

related to the position and inclination of the webcam, its focal length, its radial distortion coefficient and CCD
discrete acquisition, that may easily affect the transformation matrix, with the result of providing completely
wrong coordinates.

Once the coordinates of the two lights in real Cartesian space have been calculated, the position and
orientation of the robot are computed, according to the following formulae:

2
bluered

robot

xx
x

+
=

2
bluered

robot

yy
y

+
= ˜̃

¯

ˆ
ÁÁ
Ë

Ê

-

-
=

bluered

bluered
robot xx

yy
arctgnorientatio

Eventually, a final minor correction is applied, that takes into account the distance between the lights, that is
fixed and known.

5. Calibration of the system

As previously described, the system calibration is a mandatory procedure for the algorithm to properly work.
The calibration procedure we used is based on the mathematical model referred to as simplified

photogrammetric, introduced by Tsai [5], which is particularly suited to the poor characteristics of the used
camera , taking into consideration all those parameters like radial distortion, real image centre, etc. The
procedure is quite simple, requiring to establish a one-to-one correspondence between a certain set of points (for
instance belonging to a grid) in the real Cartesian space and in the camera image space. A certain number of
these correspondences, in fact, might be used to calculate the intrinsic and extrinsic parameters of the camera,
that play a key role in the runtime transformations from the image space to the real Cartesian one.

Intrinsic parameters are represented by focal length, radial distortion coefficient, actual centre of the pixel
image, etc. Extrinsic parameters are instead the rotation and translation of the camera with respect to the absolute
coordinate system used as Cartesian reference.

According to some literature examples [6], 11 is the least number of required points, even if a higher number
is often used in order to achieve better precision: in a high-precision experiment, regarding the localization on a
plane close to the camera, Tsai evaluated about 60 different points.

In order to make the calibration task easier and to reduce the required time, given the amount of different
measurements to be evaluated, a suitable GUI has been realized.

6. Experimental results

The experiment was very successful, thanks to the precise localization algorithm that showed average errors
under 1% of the distance between the robot and the webcam (measured in static conditions), allowing several
trials to be performed correctly with low processing and transmission latencies.

The choice of an active marker proved to be very good, with high stability in recognition performances that
were quite independent from environment lighting.

The overhead due to DCDT architecture is very small and acceptable for a correct navigation of the robot,
proving that the device communities approach could actually find useful implementations. In fact, the overall low
cost of the system, the use of means that are normally available in many office environments (such as personal
computers, LAN’s, etc.), as well as the smooth motion of the robot and the ease of development of various
DCDT Members, open new and interesting perspectives.

Moreover, from a timing performance point of view, on a 1,1 GHz Pentium III computer, we reached with
non-optimized executables the following results, that seem quite interesting, since they allow an average
detection rate of up to 14 frames per second:

Average time (ms) Maximum time (ms)
Acquisition 10 10
RGB Conversion and Thresholding 25 30
Identification 10 20
Coordinate transformation 25 30
Total Time 70 90

Obviously, the system also has some limitations, basically related to the quality of the images and the time
required by the five processing steps previously described: dealing with a commercial webcam means low
quality and resolution in the image. Also, the power of the active marker had to be limited, due to the fact that
the robot is battery-driven and its energy supply is limited. The limited dynamics of the used camera become
another constraint, since the characteristics of the image acquired in function of the distance, may be very
different, as shown in Fig. 4, and will eventually prevent a proper detection of the lights in the far field (about 8
meters and above from the webcam standpoint).

Fig. 4. Images of the red light at different distances from the webcam

For these reasons, the system may perform well only in indoor environments, where sunlight and its reflections
are almost absent. Moreover, the robot needs to move in a confined space (up to 8 m from the webcam) at a
reasonable speed according to the camera frame rate and the processing power available. In our case, we found
that an average speed of 500-800 mm per second could be quite precisely tracked by the system. It is obviously
possible to use multiple cameras, as it will be done in future experiments.

7. Conclusions and future works

In this paper we presented a first simple implementation example of a recently developed middleware, called
DCDT, to foster what we have named Community of devices, leading to the realization of feasible and low cost
mobile robotics infrastructures.

Being only at the beginning of the research, there are many possible evolutions and improvements to the
system:

• The realized code might be optimized for faster execution and better timing performances;
• More sophisticated filtering approaches (such as Kalman or nonlinear techniques) could be implemented

in order to enhance the detection of the coloured blob centroid and to reject false positives;
• The system could be expanded in order to accommodate more than one camera covering a broader area and

connecting the robot via IEEE802.11b wireless network;
• Test the improvement which can be achieved using cameras with greater dynamics;
• Enhance the robustness of the system by toggling on/off or otherwise modulating the markers in order to

have the system recognize and properly localize the robot.
Nevertheless, the achieved results even at this early stage in term of precision reached, low cost, ease of
implementation, are indeed promising and suggest several possible industrial applications.

References

[1] R. Cassinis, P. Meriggi, A. Bonarini, and M. Matteucci, “Devices Community Development Toolkit:
An Introduction,” presented at Eurobot ‘01, Lund, Sweden, 2001.

[2] G. Wampfler, M. Salecker, and J. Wittenburg, “Kinematics, Dynamics, and Control of Omnidirectional
Vehicles with Mecanum Wheels,” Mechanics of Structures and Machines, vol. 17, pp. 165-177, 1989.

[3] P. d. Pascalis, M. Ferraresso, M. Lorenzetti, A. Modolo, M. Peluso, R. Polesel, R. Rosati, N.
Scattolin, A. Speranzon, and W. Zanette, “Golem Team in Middle-Sized Robots League,” in RoboCup-
2000: Robot Soccer World Cup (IV), G. Kraetszchmar, Ed. Berlin: Springer Verlag, 2001, pp. 603-606.

[4] M. Cagno and M. Panteghini, “Un Sistema Distribuito per la Localizzazione di Robot Mobili dotati di
Marker attivi,” M. Sc. Thesis, University of Brescia, 2002.

[5] R. Y. Tsai, “A versatile camera calibration technique for high-accuracy 3D machine vision metrology
using off-the-shelf TV cameras and lenses,” IEEE Journal of Robotics and Automation, vol. 4, pp.
323-334, 1987.

[6] H. Bakestein, “A Complete DLT-based Camera Calibration with Virtual 3D Calibration Object, in
Department of Mathematics and Physics,. Prague: Charles University, 1999.

