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Abstract. This paper presents an algorithm that uses visual informa-
tion to achieve the homing of an autonomous agent inside a previously
visited environment. An image grabbed at the target position is com-
pared with the currently perceived one to determine the position of the
robot and its target. Only particular regions of the image called Visual
Reference are taken into account. A visual reference correlation criterion
that uses the Fourier{Mellin transform to match the Visual References
in di�erent images is chosen. This transform in fact allows to compute
Visual References invariant to rotation, scaling and translation (RST).
Robustness due to the use of the Mellin Transform in the Visual Refer-
ences selection and coupling leads to more precise navigation. Tests and
results are presented.

1 Introduction

The term homing indicates the navigation process by means of which an autonomous
robot drives itself towards a precise location.The approach proposed in this paper de-
rives from a biological homing model developed by Cartwright and Collett [1, 2], does
not require any preconditioning of the environment. It estimates the robot and the
target relative positions by comparing an image grabbed at the target position with
the currently perceived one. The navigation is performed using exclusively the visual
information grabbed at the two positions. Stable chromatic areas used as landmarks are
chosen automatically, without user supervision, using only the chromatic and geometric
characteristics of the segmented images.

The main di�erence between the Cartwright and Collett model and the implemented
navigation system is that the camera used in this work can not take omnidirectional
images. To overcome the limitation due to a small angle of view the robot learns and
then approaches the homing point keeping its heading constant. Doing the same from
several directions simply requires an image for each chosen direction and a software pro-
gram to switch from one to the other. Using this approach, the visual landmark changes
on the image plane can be described with a simpli�ed aÆne model. Only particular
visual landmarks, automatically extracted from the image, called Visual References

(VRs), are used for the position estimate. The robot movements can be mapped into
VRs translations and apparent dimension changes on the camera acquisition plane. By
computing the translation and scale parameters of each VR in the di�erent scenes it is
possible to estimate the robot displacement in the environment.

The proposed method can be applied only for a �nal homing phase, where the system
can �nd corresponding VRs in the two images. A higher level navigation module is
supposed to drive the robot around the target image, until a valid displacement vector
can be found.
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Figure 1: Block diagram

The original approach developed by our research group [3] originally compared these
di�erent VRs by using three color parameters and four geometrical parameters, for
every VR [4, 5], obtaining a likelihood function. The coupling was then obtained by
searching the maximum of the likelihood function. In this work, the use of Fourier-
Mellin transform [6], invariant with respect to translations and scale changes [7] , is
proposed to carry out the VRs coupling. A VR descriptor containing its Fourier-Mellin
transform, a polar{log version of the bi-dimensional Fourier transform, is computed for
each VR. This step is performed using a gray{scale VR representation. A distance index
based on the inter-correlation function is used to estimate the VRs descriptors coupling.
A novel VR descriptor equalization has been inserted to increase the inter-correlation
selectivity. Moreover the inter-correlation function between two VR descriptors gives
the relative scale and rotation factor, that are used to perform a better displacement
estimation, increasing the system robustness.

2 The Homing Algorithm

The proposed algorithm can be split as shown in the block diagram of Fig. 1. This
method contains an unsupervised visual reference selection phase that allows the system
to work in both conditioned and unconditioned environments. In this phase, the system
automatically selects the VRs according to their shape and their chromatic components.
A selected region is called visual reference instead of landmark because its position in
the environment is unknown. The VRs in the actual image have to be correlated with
the VRs in the goal position image and in this phase a measure of coupling reliability is
introduced. Finally for each couple, the VR relative position information, weighed with
its coupling reliability, is used to estimate the robot position. This estimate is based
on the following simpli�ed aÆne model.

As mentioned above, the robot camera heading and height are kept constant. These
constraints allow introducing a simpli�ed aÆne model [3] and the following relations
between camera translation and aÆne parameters are obtained:
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tX = �Z
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� ax0 = K � ax0

tZ = Z � ax1 = H � ax1
(1)

where tX and tZ are the components of the robot displacement, Z is the depth
component of the distance between an object in the scene and the robot camera and
ax0, ax1 are the translation and dilation/compression factors of the simpli�ed aÆne
model.

For the test presented in this paper H and K have been set with a tuning phase
inside the navigation environment but H andK values are not critical, giving only a dis-
placement estimation proportional factor. In fact the proposed method uses iteratively
a qualitative vector estimate instead of a single precise self-localization.

In order to extract the VRs from the image, a segmentation is performed with a
region growing technique. Not all the VRs in the image are useful for the localization
task, only a selected subset of them is used. The criteria of such selection are based on
area, perimeter regularity and chromatic saturation.

3 Using Mellin Transform

Considered a reference VR r(x; y) and its rotated, shifted, scaled version s(x; y), then
its Fourier spectrum is:

jS(u; v)j = ��2 �
���R[��1(u � cos� + v � sin�); ��1(�u � sin� + v � cos�)]

���
where � is the rotation angle, � the scaling factor, (x0; y0) the translation. It is shifting
invariant with respect to r(x; y). Rotation and scale can be separated by de�ning
the r(:) and s(:) Fourier spectrum in polar coordinates (�; �), obtaining the following
relationship between the transforms:

Sp(�; �) = ��2 �Rp(� � �; �=�)

Rotating r(x; y) is equivalent to shifting Rp(�; �) along �. By using a radial loga-
rithmic scale the r(x; y) scale can be mapped in the Rpl shifting:

Spl(�; �) = ��2 �Rpl(� � �; �� �)

where � = log(�) and � = log(�). Rotation and scaling corresponds to Rpl(�; �)
shifting. A transform along � and then a logarithmic remapping is equivalent to the
Mellin transform along the same direction.

To obtain a VR descriptor two step are necessary, the computation of the VR
DFT module and its transformation into polar{logarithmic coordinates. Since the DFT
module is even, only the �rst half is taken into account. An example of VR is shown
in Fig. 2-a and the relative DFT modulus in polar{logarithmic coordinates is shown in
Fig. 2-b.

In order to increase inter{correlation performance a further amplitude equalization
phase, with a simple non{linear �lter, is inserted. Fig. 2-c shows the �lter function and
Fig. 2-d shows the results of its application on Fig. 2-b.
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Figure 2: a) an example of valid VR, b) the VR's DFT in polar{log coordinates, c) the used
equalization function, d) the resulting VR's descriptor

4 Coupling of VR descriptors

To achieve the coupling between the descriptors the following distance is used:

CRVr;s =
Wr �Ws �max ['rs(�;  )]

Wr �Ws

(2)

where 'rs(�;  ) is the intercorrelation function between the two descriptors having
energy Wr and Ws respectively; � and  are the intercorrelation function variables.

Let Wgp and Wact be the VR sets of the goal position and of the actual image, with
N and M elements respectively. A correlation matrix CM�N is build to contain the
coupling reliability values of the Wgp and Wact elements. Starting from C two boolean
matrices are computed, the �rst Bgp;act links each VR inWgpwith the VR inWact. Each
link is the couple that for each element in Wgp maximizes the coupling reliability value
with Wact; only the values under a threshold of 2 are considered. The second matrix
Bact;gp is computed conversely.

The �nal VR couples are obtained looking for the positions with the same relative
index where both Bgp;act and Bact;gp have a link. If this does not happen the VR inWgp

is not coupled and will not a�ect the localization process.
Once the correct VR coupling is found it possible to obtain the relative rotation

and scale factors. The position of the maximum of the VR descriptors inter{correlation
function along the radial axis gives the scale factor, while the rotation factor can be
found from the position along the phase axis. The resulting expressions are:

S = exp(�
yMAX

n
), R =

xMAX

n
� 180Æ

where xMAX and yMAX are the position of the inter{correlation function maximum,
S the scale parameter, R the rotation parameter in degree and n the image dimension.



Figure 3: Goal and actual test images

With these additional parameters a new VR coupling validation phase is added.
From the used aÆne model we can observe that VR in di�erent positions can only be
scaled but cannot rotate, therefore VR couples having a not null rotation angle are
discarded. This new validation phase reduces the number of false couplings.

5 Displacement estimation

To estimate the robot position a displacement vector ~vi for each VRs couple is com-
puted. From the aÆne model presented in Par. 2 two parameters ax0 and ax1 must be
estimated. The previous method computes ax1 in the following way:

ax1 =
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where A(�) is the VR area, observing that a robot movement in Z-direction corre-
sponds to a compression/dilation in the VR area.

Using the Fourier-Mellin Transform the ax1 expression can be replaced with the
scale parameter obtained from the VR descriptors intercorrelation function (4):

ax1 = 1� S

Then ax0 is computed with the simpli�ed aÆne model:

ax0 = (�xg � ax1 � x
goal
g ) � (1� ax1)

where (xgoalg ; ygoalg ) is VR center of mass position in goal image and (�xg;�yg) the
VR center of mass translation. Finally the partial vector ~vi is given by (1).

The overall localization vector is computed summing all the partial vectors, weighed
with their normalized coupling reliability value CRV (i):

~V =
NX
i=0

exp(�CRV (i))PN
i=0 exp(�CRV (i))

� ~vi;

where N is the number of VR couples used.
If no valid VRs are present in actual image or no valid VRs coupling are found a

displacement vector can't be estimate. This situation should be managed by a higher{
level navigation module.
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Figure 4: VR coupling with min-distance method
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Figure 5: VR coupling with Mellin

6 Tests

Di�erent tests have been performed in some indoor environment. In Fig. 3 two examples
obtained from a robot navigation are obtained. The �rst and third are the same goal
images. The second image is been taken 1,5 meter left and 2 meter backward from the
goal image and the fourth image 2 meter right and 2 meter backward.

Computed VR couplings of the two examples of Fig. 3 are shown in Fig. 4 for
the min-distance method and in Fig. 5 for the Fourier-Mellin correlation method. The
estimated displacements resulting for the two techniques are given in Fig. 6.

As it can be seen from the �gures, the use of VR Fourier-Mellin descriptors performs
a better coupling with respect to the min{distance technique. Moreover VRs scale
factor and rotation angle are automatically obtained using the Fourier-Mellin coupling
algorithm.

In Fig. 7a and 7b the �rst steps estimate from a set of points around the goal
position are shown. In Fig. 7a VRs are coupled using the min-distance technique
and in Fig. 7b using the Fourier-Mellin matching algorithm. For better visualization,
vectors are shown with modules reduced by a 1

2
factor. Using the rotation parameter

obtained from Fourier-Mellin Fig. 7c reduces the number of false couplings and gives
a more precise �rst movement estimate. Fig. 7d shows a complete navigation example
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Figure 6: Displacement estimate using the min-distance algorithm and the Fourier-Mellin
algorithm
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Figure 7: Movement estimate using a) min-distance technique, b) Fourier-Mellin, c) Fourier-
Mellin and its scale parameter and d) navigation example using the three methods



using all the three methods. As it can be noticed, the min-distance algorithm yields to a
�rst step failure due to false VRs couplings performed by the matching algorithm. The
use of the Fourier-Mellin algorithm reduces the number of false VRs couplings, leading
to more precise displacement estimate, and �nally higher proportion displacement is
achieved introducing the Fourier-Mellin scale factor.

Tests were performed using an Activemedia Pioneer I, driven by an Intel Pentium
II 333 MHz, running Linux RedHat 5.2. The complete navigation step is performed in
about 10 sec using the Fourier-Mellin algorithm(2 seconds for the segmentation process
and 8 seconds for the navigation algorithm) and about 5 sec using the min-distance
algorithm, those times are obtained from di�erent navigations with four VRs in each
image. Improvement in computation time can be obtained using dedicated hardware
for FFT computation and software optimization.

7 Conclusions and perspectives

The proposed homing method uses visual references autonomously extracted from the
environment images and computes a descriptor for each VR using the Fourier{Mellin
transform. The choice of this operator derives from its invariance to both scale and
orientation. A distance measurement is used to couple descriptors across images taken
from di�erent positions. From the comparison of the coupled VRs an estimate of the
robot displacement is made. Using this information the robot can navigate toward
the goal position. The use of VR Mellin descriptors performs better coupling with re-
spect to the min-distance technique and the use of colour information allows to extract
signi�cant VRs in an easier way. An improvement of the displacement estimate robust-
ness is obtained using the relative scale and rotation factors extracted from the Mellin
Transform, decreasing the number of false couplings. In this work the Fourier-Mellin
algorithm is applied to the VRs gray scale representation and is more dependent on
the VR shape, rather than VR color properties. However color unconstancy, due to
di�erent environment lighting, heavily a�ects the VRs extraction phase. Depending on
the scene illumination the segmentation process could give very di�erent results, the
test of color recovery techniques to overcome this problem are in progress.
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